102 research outputs found

    Feasibility of deep-inspiration breath-hold PET/CT with short-time acquisition:detectability for pulmonary lesions compared with respiratory - gated PET/CT

    Get PDF
    13301甲第4201号博士(保健学)金沢大学博士論文本文Full 以下に掲載:Annals of Nuclear Medicine 28(1) pp.1-10 2014. Springer. 共著者:Shozo Yamashita, Kunihiko Yokoyama, Masahisa Onoguchi, Haruki Yamamoto, Shigeaki Hiko, Akihiro Horita, Kenichi Nakajim

    Selective Gene Transfer to the Retina Using Intravitreal Ultrasound Irradiation

    Get PDF
    This paper aims to evaluate the efficacy of intravitreal ultrasound (US) irradiation for green fluorescent protein (GFP) plasmid transfer into the rabbit retina using a miniature US transducer. Intravitreal US irradiation was performed by a slight modification of the transconjunctival sutureless vitrectomy system utilizing a small probe. After vitrectomy, the US probe was inserted through a scleral incision. A mixture of GFP plasmid (50 μL) and bubble liposomes (BLs; 50 μL) was injected into the vitreous cavity, and US was generated to the retina using a SonoPore 4000. The control group was not exposed to US. After 72 h, the gene-transfer efficiency was quantified by counting the number of GFP-positive cells. The retinas that received plasmid, BL, and US showed a significant increase in the number (average ± SEM) of GFP-positive cells (32 ± 4.9; n = 7; P < 0.01 ). No GFP-positive cells were observed in the control eyes (n = 7). Intravitreal retinal US irradiation can transfer the GFP plasmid into the retina without causing any apparent damage. This procedure could be used to transfer genes and drugs directly to the retina and therefore has potential therapeutic value

    Feasibility of deep-inspiration breath-hold PET/CT with short-time acquisition: detectability for pulmonary lesions compared with respiratory-gated PET/CT

    Get PDF
    Objectives: Deep-inspiration breath-hold (DIBH) PET/CT with short-time acquisition and respiratory-gated (RG) PET/CT are performed for pulmonary lesions to reduce the respiratory motion artifacts, and to obtain more accurate standardized uptake value (SUV). DIBH PET/CT demonstrates significant advantages in terms of rapid examination, good quality of CT images and low radiation exposure. On the other hand, the image quality of DIBH PET is generally inferior to that of RG PET because of short-time acquisition resulting in poor signal-to-noise ratio. In this study, RG PET has been regarded as a gold standard, and its detectability between DIBH and RG PET studies was compared using each of the most optimal reconstruction parameters. Methods: In the phantom study, the most optimal reconstruction parameters for DIBH and RG PET were determined. In the clinical study, 19 cases were examined using each of the most optimal reconstruction parameters. Results: In the phantom study, the most optimal reconstruction parameters for DIBH and RG PET were different. Reconstruction parameters of DIBH PET could be obtained by reducing the number of subsets for those of RG PET in the state of fixing the number of iterations. In the clinical study, high correlation in the maximum SUV was observed between DIBH and RG PET studies. The clinical result was consistent with that of the phantom study surrounded by air since most of the lesions were located in the low pulmonary radioactivity. Conclusion: DIBH PET/CT may be the most practical method which can be the first choice to reduce respiratory motion artifacts if the detectability of DIBH PET is equivalent with that of RG PET. Although DIBH PET may have limitations in suboptimal signal-to-noise ratio, most of the lesions surrounded by low background radioactivity could provide nearly equivalent image quality between DIBH and RG PET studies when each of the most optimal reconstruction parameters was used. © 2013 The Author(s).In Press / 発行後1年より全文を公

    九州における高冷地の土地利用と集落の発展 : 九重山北麓飯田高原の場合

    Get PDF
    添付資料:飯田高原中央部の土地利用

    Choroidal Structure of CSC on OCT Image

    Get PDF
    Purpose To determine the structural changes of the choroid in eyes with central serous chorioretinopathy (CSC) by enhanced depth imaging optical coherence tomography (EDI-OCT). Methods A retrospective comparative study was performed at two academic institutions. Forty eyes with CSC, their fellow eyes, and 40 eyes of age-matched controls were studied. Subfoveal cross sectional EDI-OCT images were recorded, and the hypo reflective and hyperreflective areas of the inner and outer choroid in the EDI-OCT images were separately measured. The images were analyzed by a binarization method to determine the sizes of the hyporeflective and hyperreflective areas. Results In the inner choroid, the hyperreflective area was significantly larger in the CSC eyes (35,640±10,229 μm2) than the fellow eyes (22,908±8,522 μm2) and the control eyes (20,630±8,128 μm2; P<0.01 vs control for both, Wilcoxon signed-rank test). In the outer choroid, the hyporeflective area was significantly larger in the CSC eyes (446,549 ±121,214 μm2) than the control eyes (235,680±97,352 μm2, P<0.01). The average ratio of the hyporeflective area to the total choroidal area was smaller in the CSC eyes (67.0%) than the fellow eyes (76.5%) and the control eyes (76.7%) in the inner choroid (P<0.01, both). However, the ratio was larger in the CSC eyes (75.2%) and fellow eyes (71.7%) than in the control eyes (64.7%) in the outer choroid (P<0.01, both). Conclusions The larger hyperreflective area in the inner choroid is related to the inflammation and edema of the stroma of the choroid in the acute stage of CSC. The larger hyporeflective areas in the outer choroid is due to a dilatation of the vascular lumens of the larger blood vessels. These are the essential characteristics of eyes with CSC regardless of the onset
    corecore