2,601 research outputs found

    Modelling Electron Spin Accumulation in a Metallic Nanoparticle

    Full text link
    A model describing spin-polarized current via discrete energy levels of a metallic nanoparticle, which has strongly asymmetric tunnel contacts to two ferromagnetic leads, is presented. In absence of spin-relaxation, the model leads to a spin-accumulation in the nanoparticle, a difference (Δμ\Delta\mu) between the chemical potentials of spin-up and spin-down electrons, proportional to the current and the Julliere's tunnel magnetoresistance. Taking into account an energy dependent spin-relaxation rate Ω(ω)\Omega (\omega), Δμ\Delta\mu as a function of bias voltage (VV) exhibits a crossover from linear to a much weaker dependence, when ∣e∣Ω(Δμ)|e|\Omega (\Delta\mu) equals the spin-polarized current through the nanoparticle. Assuming that the spin-relaxation takes place via electron-phonon emission and Elliot-Yafet mechanism, the model leads to a crossover from linear to V1/5V^{1/5} dependence. The crossover explains recent measurements of the saturation of the spin-polarized current with VV in Aluminum nanoparticles, and leads to the spin-relaxation rate of ≈1.6MHz\approx 1.6 MHz in an Aluminum nanoparticle of diameter 6nm6nm, for a transition with an energy difference of one level spacing.Comment: 37 pages, 7 figure

    Water vapor radiometry research and development phase

    Get PDF
    This report describes the research and development phase for eight dual-channel water vapor radiometers constructed for the Crustal Dynamics Project at the Goddard Space Flight Center, Greenbelt, Maryland, and for the NASA Deep Space Network. These instruments were developed to demonstrate that the variable path delay imposed on microwave radio transmissions by atmospheric water vapor can be calibrated, particularly as this phenomenon affects very long baseline interferometry measurement systems. Water vapor radiometry technology can also be used in systems that involve moist air meteorology and propagation studies

    Comments on Drinfeld Realization of Quantum Affine Superalgebra Uq[gl(m∣n)(1)]U_q[gl(m|n)^{(1)}] and its Hopf Algebra Structure

    Full text link
    By generalizing the Reshetikhin and Semenov-Tian-Shansky construction to supersymmetric cases, we obtain Drinfeld current realization for quantum affine superalgebra Uq[gl(m∣n)(1)]U_q[gl(m|n)^{(1)}]. We find a simple coproduct for the quantum current generators and establish the Hopf algebra structure of this super current algebra.Comment: Some errors and misprints corrected and a remark in section 4 removed. 12 pages, Latex fil

    Transfer matrix eigenvalues of the anisotropic multiparametric U model

    Full text link
    A multiparametric extension of the anisotropic U model is discussed which maintains integrability. The R-matrix solving the Yang-Baxter equation is obtained through a twisting construction applied to the underlying Uq(sl(2|1)) superalgebraic structure which introduces the additional free parameters that arise in the model. Three forms of Bethe ansatz solution for the transfer matrix eigenvalues are given which we show to be equivalent.Comment: 26 pages, no figures, LaTe

    Jacobson generators of the quantum superalgebra Uq[sl(n+1∣m)]U_q[sl(n+1|m)] and Fock representations

    Full text link
    As an alternative to Chevalley generators, we introduce Jacobson generators for the quantum superalgebra Uq[sl(n+1∣m)]U_q[sl(n+1|m)]. The expressions of all Cartan-Weyl elements of Uq[sl(n+1∣m)]U_q[sl(n+1|m)] in terms of these Jacobson generators become very simple. We determine and prove certain triple relations between the Jacobson generators, necessary for a complete set of supercommutation relations between the Cartan-Weyl elements. Fock representations are defined, and a substantial part of this paper is devoted to the computation of the action of Jacobson generators on basis vectors of these Fock spaces. It is also determined when these Fock representations are unitary. Finally, Dyson and Holstein-Primakoff realizations are given, not only for the Jacobson generators, but for all Cartan-Weyl elements of Uq[sl(n+1∣m)]U_q[sl(n+1|m)].Comment: 27 pages, LaTeX; to be published in J. Math. Phy

    Quantum superalgebras at roots of unity and non-abelian symmetries of integrable models

    Full text link
    We consider integrable vertex models whose Boltzmann weights (R-matrices) are trigonometric solutions to the graded Yang-Baxter equation. As is well known the latter can be generically constructed from quantum affine superalgebras Uq(g^)U_{q}(\hat g). These algebras do not form a symmetry algebra of the model for generic values of the deformation parameter qq when periodic boundary conditions are imposed. If qq is evaluated at a root of unity we demonstrate that in certain commensurate sectors one can construct non-abelian subalgebras which are translation invariant and supercommute with the transfer matrix and therefore with all charges of the model. In the line of argument we introduce the restricted quantum superalgebra Uqres(g^)U^{res}_q(\hat g) and investigate its root of unity limit. We prove several new formulas involving supercommutators of arbitrary powers of the Chevalley-Serre generators and derive higher order quantum Serre relations as well as an analogue of Lustzig's quantum Frobenius theorem for superalgebras.Comment: 31 pages, tcilatex (minor typos corrected

    Level-one Highest Weight Representation of Uq[sl(N∣1)^]U_q[\hat{sl(N|1)}] and Bosonization of the Multi-component Super t-J Model

    Get PDF
    We study the level-one irreducible highest weight representations of the quantum affine superalgebra Uq[sl(N∣1)^]U_q[\hat{sl(N|1)}], and calculate their characters and supercharacters. We obtain bosonized q-vertex operators acting on the irreducible Uq[sl(N∣1)^]U_q[\hat{sl(N|1)}]-modules and derive the exchange relations satisfied by the vertex operators. We give the bosonization of the multi-component super t−Jt-J model by using the bosonized vertex operators.Comment: LaTex file 21 page

    Ba3Ga3N5 - A Novel Host Lattice for Eu2+ - Doped Luminescent Materials with Unexpected Nitridogallate Substructure

    Get PDF
    The alkaline earth nitridogallate Ba3Ga3N5 was synthesized from the elements in a sodium flux at 760°C utilizing weld shut tantalum ampules. The crystal structure was solved and refined on the basis of single-crystal X-ray diffraction data. Ba3Ga3N5 (space group C2/c (No. 15), a = 16.801(3), b = 8.3301(2), c = 11.623(2) Å, β = 109.92 (3)°, Z = 8) contains a hitherto unknown structural motif in nitridogallates, namely, infinite strands made up of GaN4 tetrahedra, each sharing two edges and at least one corner with neighboring GaN4 units. There are three Ba2+ sites with coordination numbers six or eight, respectively, and one Ba2+ position exhibiting a low coordination number 4 corresponding to a distorted tetrahedron. Eu2+ - doped samples show red luminescence when excited by UV irradiation at room temperature. Luminescence investigations revealed a maximum emission intensity at 638 nm (FWHM =2123 cm−1). Ba3Ga3N5 is the first nitridogallate for which parity allowed broadband emission due to Eu2+ - doping has been found. The electronic structure of both Ba3Ga3N5 as well as isoelectronic but not isostructural Sr3Ga3N5 was investigated by DFT methods. The calculations revealed a band gap of 1.53 eV for Sr3Ga3N5 and 1.46 eV for Ba3Ga3N5

    Drinfel'd Realization of Quantum Affine Superalgebra Uq(gl(1∣1))^U_q\hat{(gl(1|1))}

    Full text link
    We obtain Drinfel'd's realization of quantum affine superalgebra Uq(gl(1∣1))^U_q\hat{(gl(1|1))} based on the super version of RS construction method and Gauss decomposition
    • …
    corecore