1,905 research outputs found

    Massive torsion modes, chiral gravity, and the Adler-Bell-Jackiw anomaly

    Full text link
    Regularization of quantum field theories introduces a mass scale which breaks axial rotational and scaling invariances. We demonstrate from first principles that axial torsion and torsion trace modes have non-transverse vacuum polarization tensors, and become massive as a result. The underlying reasons are similar to those responsible for the Adler-Bell-Jackiw (ABJ) and scaling anomalies. Since these are the only torsion components that can couple minimally to spin 1/2 particles, the anomalous generation of masses for these modes, naturally of the order of the regulator scale, may help to explain why torsion and its associated effects, including CPT violation in chiral gravity, have so far escaped detection. As a simpler manifestation of the reasons underpinning the ABJ anomaly than triangle diagrams, the vacuum polarization demonstration is also pedagogically useful. In addition it is shown that the teleparallel limit of a Weyl fermion theory coupled only to the left-handed spin connection leads to a counter term which is the Samuel-Jacobson-Smolin action of chiral gravity in four dimensions.Comment: 7 pages, RevTeX fil

    Inverse Scattering at a Fixed Quasi-Energy for Potentials Periodic in Time

    Full text link
    We prove that the scattering matrix at a fixed quasi--energy determines uniquely a time--periodic potential that decays exponentially at infinity. We consider potentials that for each fixed time belong to L3/2L^{3/2} in space. The exponent 3/2 is critical for the singularities of the potential in space. For this singular class of potentials the result is new even in the time--independent case, where it was only known for bounded exponentially decreasing potentials.Comment: In this revised version I give a more detailed motivation of the class of potentials that I consider and I have corrected some typo

    Dynamical formation of correlations in a Bose-Einstein condensate

    Full text link
    We consider the evolution of NN bosons interacting with a repulsive short range pair potential in three dimensions. The potential is scaled according to the Gross-Pitaevskii scaling, i.e. it is given by N2V(N(xi−xj))N^2V(N(x_i-x_j)). We monitor the behavior of the solution to the NN-particle Schr\"odinger equation in a spatial window where two particles are close to each other. We prove that within this window a short scale interparticle structure emerges dynamically. The local correlation between the particles is given by the two-body zero energy scattering mode. This is the characteristic structure that was expected to form within a very short initial time layer and to persist for all later times, on the basis of the validity of the Gross-Pitaevskii equation for the evolution of the Bose-Einstein condensate. The zero energy scattering mode emerges after an initial time layer where all higher energy modes disperse out of the spatial window. We can prove the persistence of this structure up to sufficiently small times before three-particle correlations could develop.Comment: 36 pages, latex fil

    The phase diagram of the anisotropic Spin-1 Heisenberg Chain

    Full text link
    We applied the Density Matrix Renormalization Group to the XXZ spin-1 quantum chain. In studing this model we aim to clarify controversials about the point where the massive Haldane phase appears.Comment: 2 pages (standart LaTex), 1 figure (PostScript) uuencode

    Does Luttinger liquid behaviour survive in an atomic wire on a surface?

    Full text link
    We form a highly simplified model of an atomic wire on a surface by the coupling of two one-dimensional chains, one with electron-electron interactions to represent the wire and and one with no electron-electron interactions to represent the surface. We use exact diagonalization techniques to calculate the eigenstates and response functions of our model, in order to determine both the nature of the coupling and to what extent the coupling affects the Luttinger liquid properties we would expect in a purely one-dimensional system. We find that while there are indeed Luttinger liquid indicators present, some residual Fermi liquid characteristics remain.Comment: 14 pages, 7 figures. Submitted to J Phys

    Deformation surfaces, integrable systems and Chern - Simons theory

    Full text link
    A few years ago, some of us devised a method to obtain integrable systems in (2+1)-dimensions from the classical non-Abelian pure Chern-Simons action via reduction of the gauge connection in Hermitian symmetric spaces. In this paper we show that the methods developed in studying classical non-Abelian pure Chern-Simons actions, can be naturally implemented by means of a geometrical interpretation of such systems. The Chern-Simons equation of motion turns out to be related to time evolving 2-dimensional surfaces in such a way that these deformations are both locally compatible with the Gauss-Mainardi-Codazzi equations and completely integrable. The properties of these relationships are investigated together with the most relevant consequences. Explicit examples of integrable surface deformations are displayed and discussed.Comment: 24 pages, 1 figure, submitted to J. Math. Phy

    On the Rigorous Derivation of the 3D Cubic Nonlinear Schr\"odinger Equation with A Quadratic Trap

    Full text link
    We consider the dynamics of the 3D N-body Schr\"{o}dinger equation in the presence of a quadratic trap. We assume the pair interaction potential is N^{3{\beta}-1}V(N^{{\beta}}x). We justify the mean-field approximation and offer a rigorous derivation of the 3D cubic NLS with a quadratic trap. We establish the space-time bound conjectured by Klainerman and Machedon [30] for {\beta} in (0,2/7] by adapting and simplifying an argument in Chen and Pavlovi\'c [7] which solves the problem for {\beta} in (0,1/4) in the absence of a trap.Comment: Revised according to the referee report. Accepted to appear in Archive for Rational Mechanics and Analysi

    Comments on Heterotic Flux Compactifications

    Get PDF
    In heterotic flux compactification with supersymmetry, three different connections with torsion appear naturally, all in the form ω+aH\omega+a H. Supersymmetry condition carries a=−1a=-1, the Dirac operator has a=−1/3a=-1/3, and higher order term in the effective action involves a=1a=1. With a view toward the gauge sector, we explore the geometry with such torsions. After reviewing the supersymmetry constraints and finding a relation between the scalar curvature and the flux, we derive the squared form of the zero mode equations for gauge fermions. With \d H=0, the operator has a positive potential term, and the mass of the unbroken gauge sector appears formally positive definite. However, this apparent contradiction is avoided by a no-go theorem that the compactification with H≠0H\neq 0 and \d H=0 is necessarily singular, and the formal positivity is invalid. With \d H\neq 0, smooth compactification becomes possible. We show that, at least near smooth supersymmetric solution, the size of H2H^2 should be comparable to that of \d H and the consistent truncation of action has to keep α′R2\alpha'R^2 term. A warp factor equation of motion is rewritten with α′R2\alpha' R^2 contribution included precisely, and some limits are considered.Comment: 31 pages, a numerical factor correcte

    Phase Diagrams of S=3/2, 2 XXZ Spin Chains with Bond-Alternation

    Full text link
    We study the phase diagram of S=3/2 and S=2 bond-alternating spin chains numerically. In previous papers, the phase diagram of S=1 XXZ spin chain with bond-alternation was shown to reflect the hidden Z2×Z2Z_{2}\times Z_{2} symmetry. But for the higher S Heisenberg spin chain, the successive dimerization transition occurs, and for anisotropic spin chains the phase structure will be more colorful than the S=1 case. Using recently developed methods, we show directly that the phase structure of the anisotropic spin chains relates to the Z2×Z2Z_{2}\times Z_{2} symmetry.Comment: 13 pages, 6 figures(eps), RevTe
    • …
    corecore