31 research outputs found
The development of a model to describe the influence of temperature and relative humidity on respiration rate of prickly pear cactus stems in reduced O2 conditions
Respiration rate (RO2) of prickly pear cactus stems (Opuntia spp.) was measured as a function of 4 temperature (T) and 6 relative humidity (RH) combinations for O2 partial pressures between 15 and 0.8 kPa, which were considered to support aerobic respiration. The rate of respiration (RO2) was determined based on O2 depletion of the atmosphere in sealed containers containing 1 kg of stems. The O2 partial pressure declined linearly over time and the slopes of the fitted lines were used to calculate the rate of O2 uptake. The rate of O2 uptake increased with increasing temperature and decreased with increasing RH. The respiratory rate at 25°C was approximately 30 to 40 times higher than at 5°C. The respiratory rate at 65% RH was between 30 and 90% greater than at 90% RH, depending on the temperature. Data for ln(RO2) for each RH level were regressed against the inverse of the T (K-1) to determine Arrhenius constants and calculate the apparent Ea of respiration for the six RH conditions. The Ea was similar for each RH level, varying between a low of 113 to a high of 131 kJ•mol-1. An equation having an R2 of 0.95 was developed describing respiration as a function of RH and T (°C) using only four constant
Crystal structure, DFT calculations and Hirshfeld surface analysis of 3-(4-methylphenyl)-6-nitro-1H-indazole
The asymmetric unit of the title compound, C14H11N3O3, consists of two independent molecules having very similar conformations in which the indazole moieties are planar. The independent molecules are distinguished by small differences in the rotational orientations of the nitro groups. In the crystal, N - H⋯O and C - H⋯O hydrogen bonds form zigzag chains along the b-axis direction. Additional C - H⋯O hydrogen bonds link the chains into layers parallel to (10 ). These are connected by slipped π-stacking and C - H⋯π(ring) interactions. © 2018 International Union of Crystallography. All rights reserved