4,717 research outputs found

    Quantum Phase Liquids-Fermionic Superfluid without Phase Coherence

    Full text link
    We investigate the two dimensional generalized attractive Hubbard model in a bipartite lattice, and and a "quantum phase liquid" phase, in which the fermions are paired but don't have phase coherence at zero temperature, in analogy to quantum spin liquid phase. Then, two types of topological quantum phase liquids with a small external magnetic field-Z2 quantum phase liquids and chiral quantum phase liquids-are discussed.Comment: 7 pages, 2 figure

    Topological Mid-gap States of Topological Insulators with Flux-Superlattice

    Full text link
    In this paper based on the Haldane model, we study the topological insulator with superlattice of pi-fluxes. We find that there exist the mid-gap states induced by the flux-superlattice. In particular, the mid-gap states have nontrivial topological properties, including the nonzero Chern number and the gapless edge states. We derive an effective tight-binding model to describe the topological midgap states and then study the mid-gap states by the effective tight-binding model. The results can be straightforwardly generalized to other two dimensional topological insulators with flux-superlattice.Comment: 6 pages, 9 figure

    Topological superfluid in a fermionic bilayer optical lattice

    Full text link
    In this paper, a topological superfluid phase with Chern number C=1 possessing gapless edge states and non-Abelian anyons is designed in a C=1 topological insulator proximity to an s-wave superfluid on an optical lattice with the effective gauge field and layer-dependent Zeeman field coupled to ultracold fermionic atoms pseudo spin. We also study its topological properties and calculate the phase stiffness by using the random-phase-approximation approach. Finally we derive the temperature of the Kosterlitz-Thouless transition by means of renormalized group theory. Owning to the existence of non-Abelian anyons, this C=1 topological superfluid may be a possible candidate for topological quantum computation.Comment: 15 pages, 8 figure
    corecore