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ABSTRACT

The vacuolar H^-ATPase (or V-ATPases) are a family of ATP-dependent 

proton pumps that move protons across the plasma membrane at specialised sites 

such as kidney epithelial cells and osteoclasts, as well as acidifying intracellular 

compartments. The 100 kDa polytopic a subunit of this group of ATPases is 

suggested to play important roles in proton translocation, assembly, and targeting 

as well as coupling of ATP hydrolysis and proton transport of the V-ATPase. In 

man, different a subunit paralogues are encoded by four genes. ATP6V0A4 

encodes a4, which is dominantly expressed apically in «-intercalated cells in both 

human and mouse kidney.

I sought binding partners for a4 in order to address its potential role in the 

V-ATPase complex. Random peptide phage display analysis using a4's C 

terminus as a target protein revealed a consensus motif (WLELRP) with almost 

complete homology to part of the enzyme phosphofructokinase 1 (PFK-1). Activity 

of this enzyme is the rate-limiting step in glycolysis. Specificity of a4 binding to this 

peptide was confirmed by phage ELISA. Protein-protein interaction was further 

demonstrated by co-immunoprecipitation of a4 with PFK-1 from human kidney 

membrane proteins. An in vitro PFK-1 pull-down assay showed that this interaction 

is also true for the ubiquitously expressed a1 subunit. Finally, PFK-1 co- 

immunolocalised with a4 in a-IC in the collecting ducts of human kidney.

These findings indicate a direct link between V-ATPase and glycolysis, via 

the C-terminus of the pump's a subunit, and suggest a novel regulatory 

mechanism between V-ATPase function and energy supply. This interaction 

between the a subunit and PFK-1 also provides new evidence that the C-terminus 

of this subunit lies cytoplasmically in vivo.



Finally, SPR analysis suggests a possible alteration of the a4/PFK-1 

interaction by the mutation (G820R) within the a4(G) region identified from a 

patient with rdRTA, providing a potential mechanism for disease.
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CHAPTER 1 
INTRODUCTION

1.1 The Vacuolar H*-ATPase (or V-ATPase)

The vacuolar H^-ATPase (or V-ATPase) is one of the most fundamental 

enzymes in nature. Null mutations in genes encoding V-ATPase subunits are likely 

to be lethal for most eukaryotic cells, underscoring the vital role of this enzyme in 

living cells (Nelson, 1992a; Nelson and Klionsky, 1996). The V-ATPase is an 

evolutionarily ancient enzyme that is closely related to the F-ATPase (or F-ATP 

synthase) of mitochondria, chloroplasts and bacteria (Cross and Duncan, 1996; 

Fillingame, 1997; Weber and Senior, 1997). The V-ATPase was first identified in 

the 1960s (Kirshner et al., 1966) in the adrenal medulla and characterised in 

chromaffin granules (Njus and Radda, 1978). Soon thereafter, it was found in a 

number of intracellular compartments, including coated vesicles, endosomes, 

lysosomes, and the central vacuole ol Neurospora, plants, and yeast. In addition, it 

has also been found in the plasma membrane of some specialised cells, including 

osteoclasts, certain epithelial cells in the kidney and male genital tract, 

macrophages, certain tumour cells and goblet cells of the insect midgut (Brown et 

al., 1987; Chatterjee et al., 1992; Martinez-Zaguilan et al., 1993; Stevens and 

Forgac, 1997; Wieczorek et al., 1991). V-ATPases are a family of Adenosine 5'- 

triphosphate (ATP)-dependent proton pumps and have been particularly well 

characterised in yeast. Over decades of studies, much effort has been devoted to 

uncovering the functions, regulation, assembly and targeting of this enzyme in 

different membranes of a wide variety of organelles. In addition, many genes that 

encode the subunits of V-ATPases have been isolated in an attempt to determine 

the functions and regulation of these subunits, and to identify interactions among
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the subunits which allows modelling of the overall structure of V-ATPase (Forgac, 

1998, 1999; Stevens and Forgac, 1997).

1.1.1 Function of the V-ATPase

In eukaryotic cells, the pH of the cytoplasm and of intracellular 

compartments is one of the most crucial parameters, which has to be carefully 

controlled by certain transporters. Cytoplasmic pH is regulated by transporters 

such as the NaYH"" exchanger, whereas the pH within many intracellular 

compartments is maintained principally by V-ATPases (Nishi and Forgac, 2002).

Using ATP as an energy source, V-ATPases perform the vital function of 

acidifying a variety of intracellular compartments in eukaryotic organisms, and also 

pumping protons across the plasma membrane of some specialised cells of higher 

organisms. In all cases, it carries out proton transport from the cytoplasm to either 

the lumen of intracellular compartments or to the extracellular spaces. This ability 

of proton pumping not only contributes, along with other ion channels and 

transporters, to maintaining luminal pH (ranging from 4.5 to 6.5) but it also 

generates a transmembrane (TM) electrochemical proton gradient [or proton 

motive force (pmf)] across the intracellular compartmental membranes in 

organelles and the plasma membrane. Both the acidic luminal pH, and the pmf 

generated, play important roles in a variety of process in eukaryotic cells, as listed 

below.

Functions in Intracellular Organelles

Firstly, luminal acidification generated by the V-ATPase plays an important 

role in the activation of ligand-receptor dissociation that is essential for receptor 

recycling in the processes of receptor-mediated endocytosis and targeting of the 

newly synthesised lysosomal enzymes. During endocytosis, the internalised



ligand-receptor complexes are delivered to the early endosome compartment, 

where the low pH triggers release of ligands from their receptors (Geuze et al., 

1983). This ligand-receptor dissociation allows the uncoupled receptors to be 

recycled back to the cell surface where they can be reused. This receptor 

recycling process not only controls the rate of internalisation of ligands, but also 

controls the density of cell-surface receptors (Nishi and Forgac, 2002). The 

receptor density can, in turn, control the sensitivity of cells to ligands. A similar 

mechanism is also used for the intracellular targeting of newly synthesised 

lysosomal enzymes from the Golgi complex to lysosomes. In this pathway, the 

newly synthesised lysosomal enzyme first binds to their receptor, mannose-6 - 

phosphate (Man-6 -P) in the trans-Golgi, to form lysosome/Man-6 -P complexes 

which are then delivered to the late endosomes with an acidic luminal environment 

(Kornfeld, 1992). The low pH in the late endosomes activates release of the 

lysosomal enzymes from Man-6 -P receptors, again allowing the uncoupled 

receptors to be recycled back to the trans-Golgi, where they can be reused.

Secondly, luminal acidification of endosomes is required for budding of 

endosomal carrier vesicles (Aniento et al., 1996). Formation of carrier vesicles 

mediates the transport of the released ligands (during endocytosis) from early to 

late endosomes and then to lysosomes (Clague et al., 1994; van Weert et al., 

1995). These movements can be blocked by bafilomycin, a specific V-ATPase 

inhibitor, indicating the involvement of V-ATPase activity.

Thirdly, luminal acidification of endosomes also activates the fusion of 

internalised envelope viruses (such as influenza virus) with the endosomal 

membrane, a step that is essential for viral infection (White, 1992). In addition, 

vacuolar acidification in yeast is required for protein degradation and transport of 

small molecules and ions across the vacuolar membrane (Anraku et al., 1992).



Finally, during exocytosis, the pmf, which consists of voltage and pH 

differences across the plasma membrane, generated by the V-ATPase, provides a 

driving force for the transport of hormones or transmitters into secretory or 

synaptic vesicles derived from endosomes or from the Golgi network (Moriyama et 

al., 1992).

Functions in the Plasma Membrane

In osteoclasts, the V-ATPase, as the main proton pump, is present at a high 

density at a specialised domain of the apical plasma membrane, known as the 

‘ruffled border'. In the ruffled border, the V-ATPases pump protons into a sealed 

extracellular space known as the resorption lacuna between the osteoclasts and 

bone to create acidic pH required for bone digestion (bone resorption) by 

cathepsin K (Blair et al., 1989). Loss of function of the V-ATPase causes an 

increased pH in this space, which inhibits the activity of cathepsin K, resulting in 

osteopetrosis. For example, defects in the a3 subunit of the osteoclast plasma 

membrane V-ATPase are associated with infantile malignant osteopetrosis 

(Frattini et al., 2000; Kornak et al., 2000).

In the distal nephron of the mammalian kidney, a-intercalated cells (a-ICs) 

express large numbers of V-ATPases on their apical plasma membrane. The 

apical V-ATPases of a-ICs are responsible for pumping protons across the plasma 

membrane into the urine. This proton translocation plays a central role in 

maintaining acid-base homeostasis of the organism. Failure or inadequate H  ̂

excretion by the V-ATPase results in recessive distal renal tubular acidosis 

(rdRTA) as described in Section 1.3.5.3.

The mammalian epididymis and the vas deferens contain significant 

numbers of specialised proton-secreting epithelial cells that express many V- 

ATPases on their apical plasma membrane (Brown et al., 1992a). In these cells,
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the V-ATPase pumps protons across the plasma membrane into the lumen and is 

the major source of acidification compared to other acid-base transporters, which 

include a NaYH^ exchanger and a NaYHCOs" cotransporter (Au and Wong, 1980; 

Jensen et al., 1999). The low luminal pH is essential for sperm maturation as well 

as maintenance of sperm in an immotile state during their passage through the 

epididymis and vas deferens. Failure of luminal acidification is a potential 

explanation for some cases of male infertility (Hinton and Palladino, 1995).

Certain tumour cells also express V-ATPases at the plasma membrane 

where they transport protons into the extracellular space which is required for 

secretion of lysosomal enzymes. Here these enzymes participate in degradation of 

extracellular matrix, which is required for tumour metastasis (Martinez-Zaguilan et 

al., 1993).

Finally, the pmf generated by V-ATPases across the membranes of 

eukaryotic cells is utilised as a driving force for numerous secondary transport 

processes. For example, V-ATPases occur at the apical surface of goblet cells in 

the insect midgut where they pump H^ into the lumen of the midgut to generate 

pmf. This, in turn, provides the driving force to transport into the midgut in 

exchange for H  ̂ through the K^/2H^ antiporter (Wieczorek et al., 1991). In sum, 

the luminal pH of the midgut is in fact alkaline, which is essential for signal sensory 

generation (Wieczorek, 1992). In addition, V-ATPases are found at the apical 

surface of frog skin epithelial cells, where they pump protons out of cells to 

generate pmf. This generated pmf is also used as a driving force to energise Cl' 

uptake into the cells through a CI'/HCOs" exchanger (Jensen et al., 1997).



1.1.2 Structure of the V-ATPase

V-ATPases from fungi, plants and animals are structurally very similar to 

each other (Stevens and Forgac, 1997). They are large multi-subunit heteromeric 

enzymes with a structure and mechanism similar to the F-ATPase (Adachi et al., 

1990b; Forgac, 2000; Nelson and Nelson, 1989; Nelson, 1989, 1992a). Yeast 

genetics, using null mutations of V-ATPase subunits, has helped to identify the 

genuine V-ATPase subunits and led to the discovery of some novel subunits as 

well as proteins that function exclusively in the assembly of the enzyme but which 

are not the elemental subunits (Nelson and Harvey, 1999). The majority of genes 

encoding V-ATPase subunits were first cloned from bovine tissues (Nelson and 

Harvey, 1999). Using techniques such as electron microscopy (EM) and 

crosslinking, considerable progress has been made in understanding the structure 

of V-ATPase.

The holoenzyme has a molecular weight of approximately 830 Kilodalton 

(kDa). At least 13 genes encode the different V-ATPase subunits in the most 

elaborately explored case: the yeast Saccharomyces cerevisiae. However, the 

total number of subunits may differ across species, probably due to specific 

regulatory constraints. Like the F-ATPase, the V-ATPase has a ball-and-stalk 

structure and membrane extrinsic and intrinsic domains, termed Vi and Vo, 

respectively (Forgac, 1989, 1998; Moriyama et al., 1991; Stevens and Forgac, 

1997). The Vi domain is a catalytic peripheral complex of approximately 570 kDa 

that is composed of 8  different kinds of subunits (subunits A-H) with a probable 

stoichiometry of A3 B3C1D1F1G2 H1.2 (Arai et al., 1988; Kawasaki-Nishi et al., 2003b; 

Xu et al., 1999). The stoichiometry of majority Vi subunits has been determined by 

quantitative amino acid analysis (Arai et al., 1988). The main function of the Vi 

domain is to bind ATP and to catalyse ATP hydrolysis. The Vo domain is an



integral membrane complex of approximately 260 kDa that is composed of five 

different kinds of subunits (a, c, c', c" and d) with a stoichiometry of a id ic” i(c’c)4-6 

(Arai et al., 1988; Powell et al., 2000). Both subunits c' and c" are homologous to 

the c subunit and they are all highly hydrophobic proteolipid subunits. Genetic 

studies in yeast have demonstrated that a fully functioned V-ATPase must contain 

at least one copy of each proteolipid subunit (Hirata et al., 1997). It is not clear 

why the V-ATPase requires three different proteolipid subunits compared to its 

evolutionarily related F-ATPase. However, to date, mammalian orthologues of 

yeast o' have not been identified. In addition, a novel, extremely hydrophobic 9.2- 

kDa integral membrane protein, named M9.7 or M9.2, was previously identified in 

Manduca sexta, Arabidopsis thaliana, and bovine chromaffin granules (Ludwig et 

al., 1998; Sze et al., 2002; Wieczorek et al., 2000). Very recently, the yeast 

orthologue of this protein, named Vma9p, was identified and its null mutation 

showed a typical Vma" growth phenotype (i.e. cells that grow only in acidic 

conditions: pH 5.5-6.5) (Sambade and Kane, 2004). The finding of Vma9p has 

finally positioned this protein as a component element of Vo domain of V-ATPase 

and it is now referred to as subunit e. The main function of the Vq domain is to 

transport protons across the membrane. The subunit molecular weights, 

distributions and proposed functions of the yeast and mammalian V-ATPase are 

shown in Table 1. Furthermore, several studies on V-ATPases of yeast and 

insects showed that a reversible dissociation of the Vi and Vo domains occurs, 

suggesting a dynamic equilibration between assembled and dissociated V-ATPase 

complex, as described later in Section 1.1.4.
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Topographical analysis using membrane impermeant reagents and proteolysis 

indicates that the Vi complex is orientated towards the cytoplasmic side of the 

membrane and can be dissociated from the membrane using chaotropic agents (such 

as Kl and KN03) in the absence of detergents (Adachi et al., 1990a; Adachi et al., 

1990b; Arai et al., 1988). The Vi domain possesses six potential nucleotide binding 

sites located on subunits A and B (Forgac, 1999; Nishi and Forgac, 2002). Only those 

on the A subunit are catalytic binding sites (Feng and Forgac, 1992; Zhang et al., 

1995), whereas the remaining three located on the B subunit are non-catalytic, but 

essential sites, presumed to be regulatory (Liu et al., 1996; Vasilyeva and Forgac, 

1996; Zhang et al., 1995). The Vq domain is a membrane-spanning complex. The 

three dimensional (3D) structure of the Vo domain purified from bovine brain has been 

determined by EM at a 21 Â  resolution (Wilkens and Forgac, 2001). In 1994, Zhang 

et al. had observed a DCCD inhibitable passive proton conductance for the 

reassembled Vq domain, suggesting that this domain is responsible for proton 

translocation across the membrane in which it is anchored (Zhang et al., 1994). The 

DCCD binding site is located on the c subunit of the Vo domain (Arai et al., 1987; 

Finbow et al., 1992). Although subunit d in the Vq domain does not possess any 

integral membrane spanning regions (Wang et al., 1988), it remains tightly bound to 

Vo domain upon dissociation of Vi from Vo (Zhang et al., 1992). Connection of subunit 

d with the Vo domain may be through interaction with the a subunit cytoplasmic 

domain (Graham et al., 2000). Apart from the d subunit, the a, c, o' and c” subunits 

have significant luminal domains (Arai et al., 1988).

To date the yeast and bovine V-ATPases are the best characterised proton 

pumps in eukaryotes. EM has revealed that, like the F-ATPase, the peripheral and



integral domains of the bovine V-ATPase are connected by two stalks (Wilkens et al.,

1999). In addition, crosslinking studies of the bovine V-ATPase revealed the 

arrangement of certain subunits in the complex (Adachi et al., 1990b; Xu et al., 1999). 

As a result, a more detailed structural model (Figure 1A) can be proposed that is 

defined by several regions: a catalytic core composed of A and B subunits; a central 

stalk, suggested to be composed of D and F subunits; a peripheral stalk likely to be 

composed of the N-terminus of the a subunit, together with C, E, G and H, and a 

proton-translocating domain composed of the C-terminus of a, with c, c', c" and d 

subunits (Forgac, 2000; Landolt-Marticorena et al., 2000; Nishi and Forgac, 2002; 

Stevens and Forgac, 1997; Xu et al., 1999).
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1.1.3 Regulation of the V-ATPase

A critical question is what is the mechanism by which luminal acidification 

generated by the V-ATPase is controlled in eukaryotic cells. Although the cellular 

proteins that regulate V-ATPases remain largely unknown (Forgac, 2000), several 

studies have provided clues into the assembly, targeting, and organisation of V- 

ATPase, changes in the tightness of coupling between proton transport and ATP 

hydrolysis, as well as for the regulation of V-ATPase activity.

In yeast, the Vi domain cannot be attached to the Vo in the absence of any 

of the Vo subunits, although the absence of Vi does not prevent the Vo domain 

from being assembled and targeted to the central vacuole (Doherty and Kane, 

1993; Kane et al., 1992; Nelson and Nelson, 1990; Noumi et al., 1991). However, 

the Vo domain cannot be assembled/or stabilised in the absence of the c and a 

subunits (Bauerle et al., 1993; Graham et al., 2000; Kane et al., 1992). So where 

does assembly of V-ATPase occur? In bovine cells, assembly of V-ATPase 

complexes from newly synthesized subunits is blocked when transport from the 

endoplasmic reticulum (ER) to the Golgi complex is inhibited (Graham et al., 1998; 

Myers and Forgac, 1993). Also, three proteins, Vma12p, Vma21p and Vma22p, 

required for Vo domain assembly have been localised to the ER of yeast (Graham 

et al., 1998; Hill and Stevens, 1994; Hirata et al., 1993; Jackson and Stevens, 

1997; Tomashek et al., 1997). These results suggest that the assembly of Vo and 

Vi into the holoenzyme occurs in the ER. These assembled V-ATPases are then 

targeted to their required destinations, such as vesicular compartments and 

specialised cell membranes.

Several vertebrate urinary epithelia are able to shuttle V-ATPases between 

vesicular compartments and the plasma membrane upon stimulation. For 

example, in the kidney, systemic acidosis causes vesicle exocytosis which in turn
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delivers more V-ATPases to the apical plasma membrane, resulting in an increase 

in secretion (Brown, 2000; Brown and Breton, 2000; Gluck, 1992; Schwartz et 

al., 1985). In contrast, when the stimulus is reversed, the proton pumps are 

removed from the apical membrane by endocytosis. These results suggest that a 

dynamic exchange of V-ATPases may occur between endomembranes and the 

plasma membrane (Harvey and Wieczorek, 1997).

In addition to the reversible membrane shuttle of the holoenzyme, reversible 

dissociation of the Vi and Vo domains has been shown to occur in both yeast and 

insects. In 1995, Kane demonstrated that in yeast, glucose deprivation results in a 

rapid dissociation of Vi and V q domains, and this effect is reversed upon addition 

of glucose (Kane, 1995). This study suggests that there is a dynamic equilibration 

between the assembled and dissociated V-ATPase complex. A similar conclusion 

has been drawn from studies of changes in V-ATPase assembly during moulting 

and starvation in insects (Graf et al., 1996; Sumner et al., 1995; Wieczorek et al.,

2000). These studies demonstrated that under these conditions, the amount of V- 

ATPase holoenzyme in the goblet cell apical membrane of the tobacco hornworm 

midgut decreases whilst the concentration of cytosolic Vi complexes increases. 

This suggests a reversible shuttling of Vi complexes that dissociate and 

reassociate with the membrane Vo complexes, rather than by a reversible 

membrane shuttle. Because the separated Vi and V q domains do not function as a 

ATPase or as a proton pump, this disassembly/reassembly of Vi and V q domains 

may provide a potential mechanism for regulating V-ATPase activity in vivo 

(Puopolo et al., 1992b; Zhang et al., 1992).

In addition, certain V-ATPase subunits that have multiple paralogues have 

been suggested to contain information necessary for differential targeting of V- 

ATPase. These include subunits B, 0, G, E, a and d. Furthermore, a 29-kDa
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glycoprotein named Ac45 (also called glycoprotein IV) was identified in association 

with the Vo domain of V-ATPase from the membrane of chromaffin granules 

(Getlawi et al., 1996; Supek et al., 1994). This protein is present in many 

mammalian V-ATPases. As there is no yeast counterpart of Ac45, it is quite 

difficult, without yeast genetics as a tool, to make a convincing assignment of this 

protein as a genuine V-ATPase subunit. However, a possible function for Ac45 as 

an organelle and membrane specific targeting protein was proposed (Supek et al., 

1994).

Besides the assembly and targeting described above, V-ATPase activities 

and proton transport can also be affected by several other mechanisms. Firstly, 

disulphide bond formation between conserved cysteine residues located at the 

catalytic site on the A subunit (Cys254 and Cys532, bovine numbering) leads to 

the reversible inactivation of V-ATPase, suggesting the cysteine residues are 

involved in redox regulation of the enzyme activity (Feng and Forgac, 1992, 1994; 

Nishi and Forgac, 2002). Formation of the disulphide bond may be induced by 

nitric oxide and the mechanism involved is possibly through a conformational 

change of the A subunit according to X-ray crystal structure analysis of Fi p 

subunit which is the counterpart of the Vi A subunit (Abrahams et al., 1994).

Secondly, a variety of extrinsic conditions and intrinsic residues of V- 

ATPase elements cause changes in the efficiency of coupling between the proton 

transport and the ATP hydrolysis activity of V-ATPases. These factors are listed as 

follows:

A) A high concentration of ATP causes partial uncoupling of V-ATPase. In 

this case, ATP hydrolysis continues to increase along with increasing 

concentration of ATP, but proton transport plateaus and then decreases (Aral et 

al., 1989).
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B) Sodium azide can completely inhibit proton transport by the V-ATPase 

without affecting ATP hydrolysis (Vasilyeva and Forgac, 1998).

C) Arg-735 of the yeast orthologue Vphip was identified to be essential for 

proton transport. A change of this residue to lysine results in a complete inactivity 

of proton transport, but about 25% of wild-type ATPase activity is retained, 

suggesting a partial uncoupling of the proton transport and ATPase activity has 

occurred (Kawasaki-Nishi et al., 2001 b).

Thirdly, the luminal pH generated by V-ATPases can be regulated by other 

transporters such as the Cl' channel or the (Na^ZK^)-ATPase. For example, in 

coated vesicles, continued proton transport by V-ATPases creates an electrical 

potential difference across the membrane. This membrane potential needs to be 

dissipated by moving other charged species across the membrane (Arai et al., 

1989). The dissipation occurs primarily through the action of a coated vesicle 

chloride channel (Arai et al., 1989; Glickman et al., 1983). Changes in activation 

and inactivation states of the Cl" channel through phosphorylation and 

dephosphorylation by cyclic-AMP dependent protein kinase A (PKA) affects Cl" 

conductance, which in turn changes the activity of V-ATPase (Mulberg et al.,

1991).

Finally, interactions between the V-ATPase and other chemicals or proteins 

that are not components of the proton pump are, or might be, involved in the 

regulation of proton pumping or enzyme activity. For example, the c subunit in Vo 

domain contains DCCD binding sites (E l37, yeast numbering). Binding of DCCD 

to this subunit inactivates proton pumping as well as ATPase activity of V-ATPase 

(Nelson and Nelson, 1989, 1990). In addition, associations of subunits E and a 

with glycolytic enzymes, may be involved in the regulation of V-ATPase activities 

(Lu et al., 2001 ; Lu et al., 2003).
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1.1.4 Comparison of the V-ATPase and F-ATPase

1.1.4.1 Structure and Enzyme Activities

The exchange of energy between ATP and ionic eletrochemical gradients [(or 

ionic motive force (imf)] is a fundamental property of life. In eukaryotic cells, three 

broad classes of ATPases [F-ATPases (or F-ATP synthases), V-ATPases, and P- 

ATPases] mediate the exchange. Among these three ATPases, V-ATPases are 

structurally and evolutionarily closely related to the F-ATP synthases. In other 

words, the two enzymes appear to have descended from an ancestral ATPase. 

This relationship is evident both in their overall structure and in the sequence 

homology or functional similarity of certain component subunits. However, 

differences between these two enzymes have also been demonstrated in many 

aspects, particularly in their function and regulation.

In eukaryotic cells F-ATP synthases are confined to chloroplasts and 

mitochondria, whereas in all known eubacteria, they are present in the plasma 

membrane. The primary function of this enzyme in eukaryotic cells is to form ATP 

at the expense of pmf. In other words, it acts as an ATP synthase. However, this 

enzyme also functions as an ATPase, i.e. generation of pmf by catalysing ATP- 

dependent proton pumping. However, the ATPase role of F-ATP synthases can 

only be performed in exceptional cases, such as under anaerobic conditions in 

bacteria (Futai et al., 1989; Grabe et al., 2000). By contrast, V-ATPases can only 

perform the latter function, i.e. operate as an ATP hydrolase, pumping protons 

away from the cytoplasmic compartment. The loss of the ATP synthase ability in 

the V-ATPase is probably due to alterations in the membrane domains of this 

enzyme (Nelson, 1992a).

The two enzymes are compared below, with both their similarities and 

differences highlighted.
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The F-ATPase is a multisubunit heteromeric protein (Figure 18) and it has a 

relatively small molecular mass of approximately 500 kDa, compared to the V- 

ATPase with a molecular weight of -830 kDa (see Section 1.1.2). It consists of at 

least nine different subunits arranged in a catalytic/regulatory Fi domain and an 

H^-translocating Fo domain. The X-ray crystal structure of the Fi domain from 

bovine heart mitochondria has been determined at the 2.8 Â resolution (Abrahams 

et al., 1994). This domain is a peripheral complex that is composed of five different 

subunits (a p y ô s )  with a stoichiometry of a s p a y iô is i .  Of these subunits, a s P s forms a 

catalytic core, y , e, and ô form a central stalk and a peripheral stalk. The Fo domain 

is an integral membrane complex that is composed of four different types of 

subunits (abed) with a stoichiometry of aibiCi2di. The c subunits are arranged in a 

ring structure which forms the main part of the proton-translocating machinery 

together with the a subunit. Similar to F-ATPases, V-ATPases are composed of a 

catalytic V i domain and a proton translocating V q domain as described in Section 

1.1.2.

Apart from the overall structural similarities, the evolutionary link between

these two families of enzymes has also been demonstrated by the sequence

homology or functional similarity of certain subunits. The F-ATPase catalytic

subunit p has roughly 25% amino acid sequence identity with the A subunit of V-

ATPase. Catalytic residues identified in the P-loop (GXXXXGKT) and the

GERXXE sequence of the p subunit are conserved in the A subunit (Futai et al.,

1989; Omote and Futai, 1998). Yeast mutagenesis experiments confirmed that the

lysine in the P-loop and the glutamate in the GERXXE sequence are catalytically

essential (Liu et al., 1997). Conservation of the two residues in the V-ATPase

suggests that the V-ATPase may have a similar catalytic mechanism (Futai et al.,

2000). In addition to the catalytic subunits, approximately 25% amino acid
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sequence identity is shared between two non-catalytic nucleotide binding subunits, 

a  (in the F-ATPase) and B (in the V-ATPase) as well as between the proteolipid 

subunits (c subunit) of the two enzymes (Bowman et al., 1992; Inatomi et al., 

1989). Although no other subunits in the two enzymes display such sequence 

homology, similar structural motifs, in a coiled-coil arrangement, were identified in 

the D subunit of Vi and the y subunit of Fi (Nelson et al., 1995). This suggests that 

the D subunit may function in the V-ATPase as the counterpart of the Fi y subunit, 

which has been implicated in coupling of ATP hydrolysis to proton pumping and in 

coupling pmf to ATP production (Nelson and Harvey, 1999). Moreover, the F 

subunit of Vi has been tentatively assigned to be an analogue of Fi ô subunit 

based on their similarity in affecting proton pumping activity and solubility 

properties (Graf et al., 1994; Nelson et al., 1994). Finally, subunits a in both Foand 

Vo domains function similarly, i.e. as aids in proton translocation across the 

membrane, although no amino acid sequence homology has been shown between 

the two subunits.

However, despite the overall structure similarity of the two holoenzymes, 

differences were revealed from the EM study of V-ATPase from Neurospora and 

the X-ray crystal structure of the Fi domain of F-ATPase. From these studies it 

was observed that although both enzymes contained a globular head attached to 

the membrane by a central stalk, the V-ATPase had additional projections 

emanating from the base of the stalk (Dschida and Bowman, 1992). In addition, 

subunit types and numbers in each domain of the two enzymes have certain 

differences. For example, unlike the Fi domain, the Vi domain contains eight 

different kinds of subunits rather than five and unlike the Fo domain, the V q domain 

contains additional proteolipid subunits c’ and c" rather than Just the c subunit.
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With regard to the enzyme activities, unlike the analogous Fi and Fo 

domains, the dissociated Vi and Vo do not function as an ATPase and a proton 

channel, respectively (Puopolo et al., 1992b; Zhang et al., 1992). Also, enzyme 

activities of the two ATPases are affected differently under certain conditions. For 

example, activity of the F-ATPase can be specifically inhibited by oligomycin, 

whereas the V-ATPase shows no sensitivity on to this chemical (Forgac, 1989). 

Instead, activity of the V-ATPase is specifically inhibited by bafilomycin and 

concanamycin (Bowman et al., 1988; Drose et al., 1993). In addition, a cysteine 

residue with a regulatory role through disulphide bonding is conserved in the P- 

loop (GXXXCGKT) of Vi A subunit but not in Fi p subunit. Modification of this 

cysteine residue using nethylmaleimide (NEM) inhibits V-ATPase activity. 

However, the F-ATPase is insensitive to NEM which can probably be attributed to 

the fact that the Fi p subunit lacks this conserved cysteine in the P-loop (Iwamoto 

et al., 1994).

1.1.4.2 Mechanism of Proton Transport

Overall structural similarities suggest that both of the V- and F-ATPases 

utilise the same basic mechanism for ATP hydrolysis, proton transport and energy 

coupling. In other words, the mechanism by which V-ATPases carry out ATP- 

dependent proton transport can be drawn from the mechanism proposed for F- 

ATPase hydrolytic function (Cross and Duncan, 1996; Vik and Antonio, 1994). In 

the latter, energy produced from ATP hydrolysis by the catalytic core is thought to 

drive the rotation of the central stalk formed mainly by the y  subunit which is 

connected both to the catalytic core in F i  and the ring of c subunits within Fo  

(Cross and Duncan, 1996; Noji et al., 1997; Sabbert et al., 1996). This results in 

the rotation of the c ring, which lies adjacent to the a subunit. The a subunit is held
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fixed relative to the catalytic core through the peripheral stalk and thought to bring 

the protons to a glutamate residue within the carboxyl group of the c subunit. The 

c subunit then rotates the protons through the membrane bilayer and releases 

them on the opposite side of the membrane as it rotates. Because rotation occurs 

in only one direction: from the Fi to Fo induced by ATP hydrolysis, this mechanism 

serves to transfer energy stored in ATP through the form of rotatory energy to a 

linear pmf across the membrane (Forgac, 2000).

This rotatory mechanism for the V-ATPase is also supported by a number of 

studies, carried out very recently. Firstly, a counter-clockwise continuous rotation 

of the G subunit (possible role in peripheral stalk) relative to the fixed c subunit in 

yeast V-ATPase was observed from the membrane side (Hirata et al., 2003). 

Secondly, a counter-clockwise rotation of the D or F subunit (possible role in the 

central stalk) of Thermus thermophilus V-ATPase was viewed from the membrane 

side (Imamura et al., 2003). Finally, a counter-clockwise rotation of the c subunit 

ring (role in the proton translocation pore) of Thermus thermophilus V-ATPases 

was also observed from the membrane side (Yokoyama et al., 2003b). All 

rotations observed above are ATP dependent.

1.1.5 Organelle and Tissue Specificity of the V-ATPase Subunits

The subunits forming the functional V-ATPase molecule may vary from 

tissue to tissue. To date, several subunits in both the Vi and Vo domains of the V- 

ATPase have been reported as having multiple paralogues which are encoded by 

different genes and show some organelle and tissue specificity as follows. Two 

genes, ATP6V1B1 and ATP6V1B2, encoding homologous but distinct 57-kDa B 

subunits (B1 and B2) have been cloned from many higher eukaryotes (Chatterjee 

et al., 1992; Nelson, 1992b; Puopolo et al., 1992a). Their amino acid sequences
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share approximately 80% identity. The B2 subunit is known to be ubiquitously 

expressed, whereas B1 is expressed most abundantly in the kidney, but also the 

cochlea and endolymphatic sac of the inner era (Karet et al., 1999b). In the kidney, 

the B1 subunit is found at the apical surface of acid-secreting cells (Nelson et al.,

1992). Deficiency of B1 causes rdRTA with impaired hearing (Karet et al., 1999b). 

Also, two 42-kDa C (Cl and 02), three 14-kDa G (G1, G2 and G3), and two 40- 

kDa d (d1 and d2) paralogues have been identified in both human and mouse 

(Murata et al., 2002; Smith et al., 2002; Sun-Wada et al., 2003). There are 

approximately 62%, 53% and 6 8 % identity in amino acid sequences between the 

two 0, three G and two d paralogues, respectively. Among the different human 0, 

G and d transcripts, 01, G1, and d1 are ubiquitously expressed, 02 is seen only in 

kidney and placenta, d2 is expressed in kidney, osteoclast and lung, and G2 and 

G3 are seen in the brain and the kidney in human, respectively (Smith et al.,

2002). Furthermore, two paralogues of the E subunit, E l and E2, have been 

reported, of which the E l is a testis-specific paralogue in mouse (Sun-Wada et al.,

2002). Heterogeneity of the a subunit across species has been widely reported 

and is described in Section 1.3.4.

The existence of multiple homologues of some subunits and their limited 

tissue localisation may contribute to the differential targeting and transport 

properties, as well as the physiological regulation of the V-ATPase in different cell 

types and membrane domains.

1.2 Interactions Involving Subunits of the V-ATPase

Various physical interactions between V-ATPase subunits, or between 

subunits and other proteins, have been reported. Inter-molecular interactions 

among different subunits are more likely to provide a structural support for the

21



proton pump, whereas interactions with other proteins might provide insights into 

V-ATPase assembly, transport, targeting, or regulation. Here, interactions relating 

to the a subunit are omitted. Instead, they are listed separately in Section 1.3.6.

1.2.1 Interactions between Subunits within the V-ATPase

As mentioned earlier, the overall structure of the V-ATPase has been 

uncovered mainly by using EM and membrane topology analysis. However, much 

more information regarding interactions between subunits is required in order to 

determine the arrangement of the subunits within the V-ATPase complex. This will 

aid in the exploration of further mechanisms of this enzyme. Using covalent cross- 

linking techniques followed by Western blotting, Xu et al. (1999) have reported 

interactions between certain subunits mainly within the Vi domain of V-ATPase 

from calf brain clathrin-coated vesicles (Xu et al., 1999). In this study, using the 

cross-linking reagent disuccinimidyl glutarate (DSG), they have identified 

interactions between the D and F, H and E, as well as H and F subunits. Also 

using the cross-linking reagent 4-(N-maleimido)benzophenone (MBP), evidence 

for subunit interactions between G and E has been provided. Furthermore, 

subunits between C and E, and D and E have been cross-linked by another cross- 

linking reagent, 1-ethyl-3-(dimethylaminopropyl)carbodiimide hydrochloride (EDO). 

Moreover, crosslinking studies using 3,3'-dithiobis(sulfosuccinimidylpropionate) 

(DTSSP) followed by 2D gel electrophoresis revealed interactions between the A 

and B subunits as well as between the c and C, D and E subunits (Adachi et al., 

1990b). Finally, a yeast two-hybrid library screen identified interaction between the 

H and E subunits, which has been further confirmed by GST pull-down assay (Lu 

et al., 2 0 0 2 ).
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1.2.2 Interactions between Subunits of the V-ATPase and other Proteins

Interactions between V-ATPase subunits and proteins that are not the 

elements of the enzyme have now been widely observed. Some of these 

associations have led to the proposal of certain novel regulatory functions.

Firstly, the V-ATPase was found to be associated with the cytoskeleton in 

osteoclasts (Nakamura et al., 1997). Mice lacking this association showed severe 

bone deformities due to abnormal osteoclast bone resorption, suggesting that this 

interaction is essential for recruitment of the V-ATPase to the ruffled border and for 

normal bone resorption. A potential mechanism for the association of V-ATPase 

with the cytoskeleton was later identified: a direct binding between the V-ATPase 

and F-actin (Lee et al., 1999). This V-ATPase/F-actin interaction appeared to be 

mediated by a high affinity F-actin binding site in the N-terminal domain of the B 

subunit of V-ATPase (Holliday et al., 2000). This interaction suggests a new 

mechanism for controlling bone absorption. Secondly, the C-terminal domain of B1 

(but not B2) contains a PDZ-binding motif which mediates interaction with the 

PDZ-binding protein, NaVH"" exchanger regulatory factor (NHE-RF) in a cell type- 

specific manner (Breton et al., 2000). Thirdly, an interaction between the E subunit 

of V-ATPases and mSosI was reported (Miura et al., 2001). mSosI is a guanine 

nucleotide exchange factor which regulates cell growth, transformation and 

differentiation (Bowtell et al., 1992). Association of the E subunit and mSosI 

suggests that V-ATPase E subunit participates in the regulation of the mSosl- 

dependent Rad signalling pathway. Fourthly, the H subunit of the V-ATPase has 

been shown to interact with Nef protein, which is the accessory protein of human 

immunodeficiency virus (HIV). As Nef protein controls expression of CD4 (the 

principal receptor for HIV) on the surface of infected cells, the Nef/H subunit 

association may be involved in the regulation of CD4 levels on the surface of T
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cells (Lu et al., 1998). Fifthly, the c subunit has been shown to interact with several 

proteins, including p i integrin (Skinner and Wildeman, 1999), E5 oncoprotein of 

papilloma viruses (Finbow et al., 1991), platelet-derived growth factor receptor 

(PDGF) (Goldstein et al., 1992) and synaptophysin/synaptobrevin (Galli et al., 

1996). These associations have indicated a role for this subunit in cell growth or 

transformation. Finally, a direct link between the V-ATPase and glycolysis has 

been proposed for the first time through the observation of an interaction between 

the E subunit and aldolase (Lu et al., 2001 ).

1.3 The a Subunit of the V-ATPase

1.3.1 Structure of the a Subunit

The cDNA encoding the a subunit was first cloned from rat brain in 1991 

(Perin et al., 1991) and this protein was initially described as the ‘large accessory’ 

subunit of V-ATPase. Its presence in kidney, however, was once disputed 

(Gillespie et al., 1991; Gluck and Caldwell, 1987). This subunit is the largest 

protein within the V-ATPase complex and is glycosylated in mammalian V- 

ATPases, but the site of glycosylation has not yet been identified (Apps et al., 

1989). The a subunit has a bipartite structure containing an amino-terminal 

hydrophilic domain of about 45 kDa and a carboxyl-terminal hydrophobic domain 

of about 55 kDa, which contains multiple putative TM helices and a small soluble 

C-terminal tail (Perin et al., 1991).

So far, different opinions on membrane topology of the a subunit, mainly 

focused on the numbers of TM regions, have been reported. The overall topology 

of the yeast Vphi p is that the N-terminal domain is located at the cytoplasmic side 

of the membrane, whereas a significant portion of its C-terminal domain is on the 

luminal side of the membrane (Arai et al., 1988; Leng et al., 1999). Evidence for
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the intracellular location of the N-terminal domain is not only from the above 

studies, but also from the interactions identified between this domain and several 

other Vi subunits of V-ATPase and a cytosolic protein (Landolt-Marticorena et al., 

2000; Lu et al., 2003; Xu et al., 1999). However, the question is how many TM 

helices are within the C-terminal hydrophobic domain. A commonly accepted 

description is that there are 6-9 TM helices regardless of species. In other words, 

the C-terminal soluble tail, after the last TM domain, is either located intracellularly 

(i.e. with 6  or 8  TM helices) or extracellularly/or luminally (i.e. with 7 or 9 TM 

helices). A model for yeast Vphip revealed, using cysteine-scanning mutagenesis 

and chemical labelling (by membrane permeant and impermeant sulfhydryl 

reagents) techniques, has 9 TM regions, i.e. the C-terminal tail faces the luminal 

side of the vacuole (Leng et al., 1999). However, such a model has not been 

verified in any higher eukaryotes. Nevertheless, data suggesting 6  or 8  TM 

helices, with cytoplasmic orientation of the C-terminal tail, have also been reported 

in yeast and Dictyostelium discoiderm (Clarke et al., 2002; Urbanowski and Piper,

1999). Both of the studies employed a green fluorescent protein (GFP) tag which 

was attached to the C-terminus of the a subunit. The results showed a cytoplasmic 

orientation of the GFP signal. Nevertheless, as the crystal structure of the a 

subunit has yet to be solved, it is hard to determine definitively whether the N- and 

C-termini lie on the same or opposite sides of the membrane. Thus, more 

evidence is required to determine the orientation of the C-terminal tail of the a 

subunit. The 6 -TM model based on computerised analysis (Smith et al., 2000) was 

used in this project for protein engineering. The predicted two-dimensional (2D) 

model of the a4 contains a large N-terminal cytoplasmic domain, six TM regions, 

five loops (three luminal and two cytoplasmic), and one small cytoplasmic C- 

terminal tail (Table 2, Figure 2).
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Symbol Region ^Mutations
a4 1-840 (840 **aa)

N-terminal domain [a4(N)] 1-393 (393 aa) V35fsX, E82fsX87, intron 6  

acceptor splice AG-^AA, 
L103fsX139, N113fsX117, G175D, 
R194X, K237del, Q276fsX, Q358X,

f^TIVI 
Loop 

2"'* TM
2"^ Loop [a4(Loop2)]

3""̂  Loop 
4̂  ̂TM 
4̂  ̂Loop 

TM 
5*̂  Loop 
e^^TM
C-terminal tail [a4(C)]

394-410 (17 aa) 
411-449 (39 aa) 
450-466 (17 aa) 
467-544 (78 aa) 
545-561 (17 aa) 
562-579 (18 aa) 
580-596 (17 aa) 
597-640 (44 aa) 
641-657 (17 aa) 
658-778 (121aa) 
779-795 (17 aa) 
796-840 (45 aa)

P395fsX407
R449H

Y502X, P524L

Intron 17donor splice GT-^AT(X565) 

S611fsX648 

Q753X, V778fsX788 

R807Q, G820R, X841Q

Table 2 Individual regions o f human a4 subunit.
*The mutations identified in the human a4 gene from patients with rdRTA (Smith et a!., 
2000; Stover et al., 2002). fs = framshift; del = deleted. **aa = amino acid.

f^ C O O H
C-Terminus

Loop2

NH

Lumen

Membrane

Figure 2 A Schematic 2D diagram o f the human a4 subunit (not to scale).
The three highlighted regions (N-terminus, Loop2 and C-terminus) of human a4, were 
chosen for characterisation in this project.
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1.3.2 Functions of the a Subunit

In contrast to all the other V-ATPase subunits in yeast where null mutations

cause growth dependence on acidic media (approximately pH 5.5-6.5) (Munn and

Riezman, 1994; Nelson and Nelson, 1990), the resulting phenotype from null

mutations in each of the VPH1 and STV1 encoding yeast a subunits (VPH1A or

STV1A) is different. These can grow in medium buffered to pH 7.5, similar to wild-

type strains (Manolson et al., 1992). This incomplete Vma" growth phenotype

implies compensation from the second a subunit. Interestingly, overexpression of

STV1 in a double-deletion strain (VPH1ASTV1 A) showed significant localisation of

Stvlp in the vacuoles rather than only in its normal locations (Golgi and

endosomes) (Kawasaki-Nishi et al., 2001c; Manolson et al., 1994). This

observation may also provide some evidence that Stvl p could possibly

compensate the defect of Vphip in the VPH1A strain. However, disruption of both

genes (double mutant) revealed a typical Vma" growth phenotype similar to all the

other V-ATPase null mutations. The specific null phenotype of Vphip made it

possible to study functions of the a subunit by amino acid replacement using

strategies such as site-directed and random mutagenesis. From the mutagenesis

studies, it was found that several charged residues in the C-terminal hydrophobic

domain of Vphip, in particular E789Q, led to a significant loss of ATP-dependent

proton transport without affecting stability or assembly of V-ATPase complex. Also

mutations of either Leu739 or Leu46 to serine led to almost complete loss of

proton-transport activity of V-ATPase (Leng et al., 1998; Leng et al., 1996). In

addition residue Arg735 was found to be essential for proton translocation

(Kawasaki-Nishi et al., 2001b). Changing this residue to asparagine, glutamic acid

or glutamine results in a fully assembled holoenzyme with a total absence of both

proton transport and ATPase activities. Furthermore, a monoclonal antibody
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directed against the extracellular domain of the a subunit inhibits endosomal 

acidification, supporting an essential role of this subunit in proton translocation 

activity of V-ATPase (Sato and Toyama, 1994).

Besides proton translocation, the a subunit was also found to be involved in 

assembly and targeting as well as coupling of ATP hydrolysis and proton transport 

of V-ATPase. Manolson et al. reported that disruption of the a subunit in yeast 

affects assembly of Vi onto the vacuolar membrane (Manolson et al., 1992). Also, 

Kawasaki-Nishi at al. have investigated functions of the N- and C-terminal 

domains of yeast a subunit (Kawasaki-Nishi et al., 2001a). Using chimeras 

constructed with either domain, they have found that the N-terminal domain of the 

a subunit appeared to control targeting of V-ATPase, whereas the C-terminal 

domain affects coupling of ATP hydrolysis and proton transport. In addition, as 

mentioned earlier, an important regulatory mechanism for controlling V-ATPase 

activity identified in yeast is the reversible dissociation of the Vi and Vo domains in 

response to glucose depletion (Kane, 1995). This in vivo dissociation process is 

also likely to be controlled by signals located in the N-terminal domain of a subunit 

(Kawasaki-Nishi et al., 2001c). Furthermore, a cluster of five mutations was 

identified between residues 800 and 814 (yeast numbering), in the C-terminal 

soluble segment, which affected either assembly or stability of V-ATPase complex 

(Leng et al., 1998). Two of these mutations may also affect targeting of the a 

subunit (Leng et al., 1998; Leng et al., 1996). Interestingly, many, if not all, of the 

residues identified in the yeast homologue, Vphip, important for activity, 

assembly, targeting or coupling of V-ATPase are conserved among the a subunit 

orthologues and paralogues in mouse and humans (Smith et al., 2001). Taken 

together, all these studies suggest that in yeast at least, the a subunit of the proton
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pump plays crucial roles not only in proton translocation, but also in assembly, 

targeting and coupling efficiency of V-ATPase complex.

In addition, associations of the a subunit with certain Vi subunits are likely 

to contribute to the formation of the peripheral stator, providing a structural support 

for the V-ATPase as described in Section 1.3.6. Moreover, evidence has been 

obtained suggesting that the inhibition of V-ATPase activity by bafilomycin and 

concanamycin are through binding of these chemicals to the a subunit (Bowman et 

al., 1988; Zhang et al., 1994), although binding sites of these two inhibitors are 

also reported on the c subunit (Bowman and Bowman, 2002; Huss et al., 2002). 

Finally, in recent years, it has become evident from the studies of human diseases 

that the presence of the a subunit is essential for normal pump function at the cell 

surface of renal ICs (a4) and osteoclasts (a3) (Frattini et al., 2000; Kornak et al., 

2000; Smith et al., 2000). Defects in the genes encoding these proteins are 

associated with the recessively inherited human disease rdRTA and infantile 

malignant osteopetrosis, respectively, underscoring the functional importance of 

this subunit in kidney and bone.

1.3.3 Comparison of the a Subunits between the V-ATPase and F-ATPase

The a subunit in Fo is a very hydrophobic protein containing 271 amino acid 

residues (E. coli numbering, approximately 25-30 kDa in bacteria and eukaryotes) 

of which the membrane topology is still unclear. However, a model based on the 

site-dependent accessibility of cysteine introduced into extramembrane loops of 

this protein was proposed to contain a N-terminal domain facing extracellularly, 

five TM a-helices and a C-terminus facing the cytoplasmic surface (Hatch et al., 

1995; Valiyaveetil and Fillingame, 1998). The a subunit contains a critical basic 

residue, Arg210 (E. coli numbering) for proton translocation which is coupled to
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ATP synthesis or hydrolysis (Valiyaveetil and Fillingame, 1997). The a subunit in 

Vo is significantly larger in size (approximately 70 kDa in bacteria and 100 kDa in 

eukaryotes) than that of Fq and no sequence homology is found between the V q 

and Fo a subunits (Yokoyama et al., 2003a). The Vo a subunit is likely to be 

composed of a large intracellular N-terminal domain, 6-9 TM helices, and a small 

soluble C-terminal tail as described in Section 1.3.1. It also contains some critical 

residues which are important for proton pumping activity without affecting 

assembly and ATP hydrolysis of the enzyme as described in Section 1.3.2. The 

latter is similar to those changes observed in E. coli Fo a subunit (Cain and Simoni, 

1988). This has prompted researchers to suggest that these residues play a 

fundamental role in the mechanism of proton translocation, and that the a subunit 

forms part of the proton-conducting pathway through the membrane (Finbow and 

Harrison, 1997). Hence, the functional studies mentioned above have suggested 

that they do in fact behave analogously, although there is no obvious sequence or 

structural homology between the a subunits of V- and F-ATPases (Bowman et al., 

1988; Leng et al., 1996; Zhang et al., 1994).

Finally, direct interactions between subunits a and c as well as a and b 

within the Fo domain have been observed (Jiang and Fillingame, 1998; Stalz et al.,

2003). Although no evidence for such protein-protein interactions has been 

reported between the counterparts of these subunits within the V q domain, a very 

recent study revealed direct interacting helical surfaces of the TM segments of the 

subunits a and o' (Kawasaki-Nishi et al., 2003a). As mentioned earlier, the o' 

subunit, together with the subunits c and c” , form the c ring which contributes to a 

main part of the proton transporting machinery.
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1.3.4 The a Subunit Orthologues and Paralogues

1.3.4.1 Tissue Specificity

The heterogeneity of the a subunit has been widely reported. Various a 

subunit paralogues show tissue specificity in different species from yeast to 

human. In yeast, two distinct genes, VPH1 and STV1, have been identified to 

encode the 100 kDa a subunit and their amino acid sequences share 

approximately 54% identity (Manolson et al., 1992; Manolson et al., 1994). The 

Vphlp-containing V-ATPases are located on the vacuolar membrane, while the 

Stvl p-containing complexes are localised in endosomes and/or Golgi (Kawasaki- 

Nishi et al., 2001c; Manolson et al., 1994). In C. elegans, four genes (vha-5, vha-6, 

vha-7, and unc-32) coding for the a subunit paralogues have been identified (Oka 

et al., 2001b; Pujol et al., 2001). Transgenic and immunofluorescence analysis 

revealed that these genes were strongly expressed in distinct cells: vha-5 in an H- 

shaped excretory cell, vha-6 in intestine, vha-7 in hypodermis, whereas unc-32 

was expressed in nerve cells. Furthermore, the vha-7 and unc-32 genes were also 

expressed in the uteri of hermaphrodites.

In addition, multiple paralogues of the a subunit have been identified in 

chicken (a l, a2, a3) and cow (a l, a2) (Mattsson et al., 2000; Peng et al., 1999). 

Among these paralogues, a l and a2 have the strongest mRNA expression in 

brain, whilst the a3 is expressed predominantly in bone and liver. In both mouse 

and man, different a subunit paralogues (a1-a4) are encoded by at least four 

genes (Oka et al., 2001a; Smith et al., 2001; Smith et al., 2000). Among these a 

subunit paralogues, ATP6V0A1 (previously known ATP6N1A) encodes a l, a 

paralogue that is ubiquitously expressed; ATP6V0A2 encodes a2 (previously 

known as TJ6 ), a paralogue that was originally identified in mouse and thought to 

have a potential immune regulatory role (Lee et al., 1990); TCIRG1 encodes a3
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(previously known as 0C116), a paralogue that is expressed specifically in 

osteoclast, a shorter transcript of a3 (known as TIRC7), which is T-cell specific 

was also identified (Heinemann et al., 1999; Li et al., 1996) and ATP6V0A4 

(previously known ATP6N1B) encodes a4, a paralogue that is expressed 

predominantly apically in acid secreting cells in the distal nephron of both human 

and mouse kidney, as well as in male genital tract and the cochlea within the 

human inner ear (Oka et al., 2001a; Smith et al., 2001; Smith et al., 2000; Stover 

et al., 2002). A more detailed localisation of the a4 subunit in the nephron is 

described in Section 1.3.5.2.3.

1.3.4.2 Sequence Divergence

Interestingly, sequence divergence between the paralogues of a subunit is 

more than would be expected due to species differences in vertebrates (Smith et 

al., 2001). In other words, the difference in sequence is greater between the 

paralogues than those of the orthologues. The sequence comparison between 

chicken, mouse, cow and human a subunit paralogues and orthologues are listed 

in Table 3. It can be seen from this table that approximately 50% amino acid 

sequence identity has been observed between the human a subunit paralogues 

(highlighted in blue), which is a similar level to the two yeast a subunit paralogues. 

However, over 83% sequence identity is found between the a subunit orthologues 

of chicken, mouse, cow compared to human (highlighted in red), with exception of 

a2 and a3 in chicken and human (highlighted in green), respectively.

The sequence divergence between the a subunit paralogues of V-ATPase 

may contribute to the differential targeting as well as other regulatory properties of 

V-ATPase (Kawasaki-Nishi et al., 2001c; Nishi and Forgac, 2000; Toyomura et al.,

2000).
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a l (human) a2  (human) a3 (human) a4 (human)
a l (chicken) 91 52 47 60
a l (mouse) 95 53 47 61
a l (bovine) 96 52 48 61
a l (human) 1 0 0 53 47 61

a2  (chicken) 53 71 50 50
a2  (mouse) 53 91 51 51
a2  (bovine) 52 92 50 51
a2  (human) 53 1 0 0 49 52

a3 (chicken) 51 54 64 51
a3 (mouse) 47 51 83 47
a3 (bovine) - - - -

a3 (human) 47 49 1 0 0 49

a4 (mouse) 61 53 47 85
a4 (human) 61 52 49 1 0 0

Table 3 Sequence comparison.
Comparison of amino acid sequence identities among the a subunit paralogues and 
orthologues of the V-ATPase in certain vertebrates (chicken, mouse, bovine and human) 
(Smith et al., 2001).

1.3.5 The Human a4 Subunit

1.3.5.1 Discovery of the ATP6V0A4 Gene

In 1999, Karet et al. analysed 31 kindreds with autosomal rdRTA using a 

genome-wide linkage analysis method to identify genes whose mutations are 

responsible for disease in these cases. From this, mutations were identified in 

ATP6V1B1 (encoding the V-ATPase B1 subunit) in approximately 2/3 of the 

analysed kindreds with rdRTA and sensorineural hearing loss (SNHL). 

Interestingly, the B1-encoding gene was observed to be expressed in the cochlea 

and endolymphatic sac of mouse, which may explain why these patients are deaf. 

(Karet et al., 1999b).

However, 13 of the initial kindreds with rdRTA and normal hearing were not 

accounted for by mutations in the B1 gene (Karet et al., 1999a). In order to identify 

loci linked to this trait, a further genome-wide linkage screen of these kindreds was
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performed and from this a new locus, named rdRTA2, was identified for this trait. 

The rdRTA2 locus was defined to be in a 14-cM (the LOD-3 support interval) or 

11-cM (LOD-1 support interval) region of 7q33-34. However, 4 of the 13 kindreds 

were not linked to the rdRTA2 locus (Karet et al., 1999a).

What is the actual disease-causing gene in the rdRTA2 locus? In 2000, 

Smith et al. performed further analysis of those 9 kindreds linked to the rdRTA2 

locus, by performing homozygosity mapping using additional closely linked 

polymorphic markers within the 11-cM region. This analysis resulted in the 

identification of ATP6N1B (now known as ATP6V0A4) (Smith et al., 2000). 

ATP6V0A4 is composed of 23 exons with the initiation codon occurring in exon 4. 

Altogether 8  homozygous mutations (premature termination, frameshift, missense 

substitution and splice site mutations) (Table 2) were identified in ATP6V0A4 from 

these patients, all of which are predicted to disrupt the encoded protein and 

consequently affect the function of the protein (Smith et al., 2000). Recently Stover 

et al. (2002) screened more cases with rdRTA, from which an additional 9 novel 

mutations (Table 2) were identified in ATP6V0A4. Mutations identified in the a4- 

encoding gene from the above studies are spread throughout the gene. 

Interestingly, it was also found that several ATP6V0A4-\\nked patients have 

developed hearing loss. However, in contrast to those cases associated with 

ATP6V1B1 with severe hearing loss in childhood, the identified hearing loss in 

ATP6V0A4-\mkedi patients is usually in young adulthood. The loss of hearing can 

probably be attributed to the expression ot ATP6V0A4, at the mRNA level at least, 

within the cochlea of human inner ear (Stover et al., 2002). Nevertheless, it is not 

clear why the hearing loss appears at an earlier age for those patients with 

ATP6V0B1 mutations than those with ATP6V0A4 mutations.
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1.3.5.2 a4 in the Kidney

1.3.5.2.1 The Kidney Nephrons and Renal Acid-base Homeostasis

The kidney contributes to maintaining a stable extracellular environment for 

all body cells. In order to control water and ionic balance, the kidney performs 

many important functions, including regulating the excretion of many substances 

( H 2 O ,  N a\ K'*’, Cr, H C O 3 " ,  Câ "", IVIĝ  ̂ and phosphate etc.) and acid-base 

homeostasis.

The kidney can be divided into an outer zone (cortex) and an inner zone 

(medulla). The basic functional unit in the kidney is the nephron (Figure 3) and 

each kidney contains approximately 400,000 to 800,000 nephrons. A nephron 

consists of the glomerulus connected to a tubule system that is composed of the 

proximal tubule, loop of Henie, distal convoluted tubule and collecting duct. The 

collecting duct has three sections, named according to their depth in the kidney: 

the cortical collecting duct (CCD), the outer medullary collecting duct (OMCD), and 

the inner medullary collecting duct (IMCD). The glomerulus functions as a filtration 

barrier for the formation of urinary filtrate, which is then modified mainly with

respect to its volume and concentration in the tubules by reabsorption and

excretion of many substances such as those mentioned above. The majority of 

reabsorption occurs in the proximal tubule. For example, approximately 65% of 

filtered Na^ is reabsorbed from the urinary filtrate in the proximal tubule. The

second highest reabsorption (25-30%) takes place in the loop of HenIe, whereas

the distal nephron, including distal convoluted tubule and collecting ducts, 

contributes to less than 1 0 % of the reabsorption.

35



Glomerular capillary

Filtrate
Afferent arteriole

Distal convoluted tubule

Efferent
arteriole

Cortical 
collecting duct

Connecting
tubuleConvoluted

Proximal tubule

Straight

Thick ascending 

limb of loop of 
Henie

Thin ascending 

limb of loop of 
Henie

Outer medullary 

collecting ductThin descending limb of 
loop of Henie

Inner medullary 

collecting duct

Papillary 

duct

Figure 3 Structure of a nephron.
A schematic diagram of a Nephron (not to scale) and collecting system of the kidney. This 
figure is taken from reference (O'Callaghan and Brenner, 2000).
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In adult humans, catabolism of an omnivorous diet generates approximately 

70 mmol H^/per day (Penney and Oleesky, 1999). The kidney must excrete this H* 

load into the urine to preserve acid-base homeostasis of the body. Buffers in the 

urine can help to regulate the concentration of H .̂ Different buffer pairs, buffer acid 

and buffer base, within the body are in equilibrium with each other. In other words, 

a change of one system will change body pH, which in turn will alter the ratio of 

buffer acid and buffer base in other systems. The major independent urinary buffer 

is sodium phosphate (Na2 HP0 4 /NaH2 P0 4 ) and the main extracellular buffer is the 

bicarbonate system (H^/HCOs), which can be altered by changing the 

concentration of HCO3" for example.

T h r o u g h  a l t e r i n g  t h e  c o n c e n t r a t i o n  o f  H C O 3 '  a n d  e x c r e t i o n  o f  H ^ ,  t h e  k i d n e y  

p l a y s  a  v i t a l  r o l e  i n  m a i n t a i n i n g  a c i d - b a s e  h o m e o s t a s i s .  O f  t h e  f i l t e r e d  H C O 3 ' ,  

a p p r o x i m a t e l y  95% i s  r e a b s o r b e d  a l o n g  t h e  n e p h r o n  t o  m a i n t a i n  n o r m a l  p l a s m a  

H C O 3 "  c o n c e n t r a t i o n  a n d  t h e r e f o r e  p l a s m a  p H .  A p p r o x i m a t e l y  80% o f  t h e  H C O 3 "  i s  

r e a b s o r b e d  i n  t h e  p r o x i m a l  t u b u l e ,  a n d  t h i s  r e a b s o r p t i o n  d e p e n d s  o n  t h e  s e c r e t i o n  

o f  H "^ i n t o  t h e  f i l t r a t e  i n  t h e  l u m e n .  In t h i s  r e g i o n ,  H ^  s e c r e t i o n  i s  m a i n l y  t h r o u g h  t h e  

N a V H '^  e x c h a n g e r ,  b u t  a l s o  t h e  V - A T P a s e  ( C h a n  a n d  G i e b i s c h ,  1981). In t h e  

f i l t r a t e ,  t h e  s e c r e t e d  H ^  i n t e r a c t s  w i t h  H C O 3 "  ( u n d e r  c a t a l y s i s  o f  C A  IV) ( B a s t a n i  

a n d  G l u c k ,  1996) t o  f o r m  C O 2  a n d  H 2 O ,  w h i c h  t h e n  d i f f u s e  b a c k  i n t o  t h e  p l a s m a  

w h e r e  t h e y  r e f o r m  a s  H ^  a n d  H C O 3 "  ( u n d e r  c a t a l y s i s  o f  C A  II). T h e  r e f o r m e d  H C O 3 '  

i s  s e c r e t e d  i n t o  t h e  b l o o d ,  v i a  a  C I 7 H C 0 3 '  e x c h a n g e r  a n d  a  N a V H C 0 3 ‘  c o ­

t r a n s p o r t e r ,  a n d  t h e  H ^  e n t e r s  t h e  n e x t  r u n  o f  t h i s  c y c l e  ( P e n n e y  a n d  O l e e s k y ,

1999). T h e  i n t a c t  i n t e r a c t i o n  e q u a t i o n  i s  s h o w n  b e l o w :
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H C 0 3  +  C O 2  +  H 2 O

* C A  I V

> C 0 2  +  H 2 O  < — ► H C O 3  +  

*CAII

Lumen Membrane Cytoplasm

Where, CA IV and CA II are carbonic anhydrase enzymes which catalyse this 
reaction in lumen and cytoplasm, respectively.

Therefore, H'*' secretion here mainly contributes to reabsorption of H C O 3 ' ,  but not 

to net acid excretion. However, a small amount of net acid excretion does occur in 

this part of the nephron, in the form of N H / produced from the interaction of H  ̂

and N H 3 .

However, in the distal parts of the nephron, especially the connecting tubule 

and collecting ducts, the secretion of H  ̂functions not only in the reabsorption of 

any remaining HCO3", but also as net acid excretion. For net acid excretion, H^ is 

pumped out from the cell into the lumen to enter the urinary filtrate by V-ATPases 

residing at the apical surface of a-ICs (see next section for details). In the filtrate, 

pumped H  ̂ is either associated with HP0 4 '̂ to form H2 PO4" in the urinary buffer 

system, or with NH3 to form NH4 ;̂ both are excreted in the urine (Kurtzman, 1990; 

Penney and Oleesky, 1999). In reality, this urinary acidification is tightly regulated 

in order to maintain acid-base homeostasis.

1.3.5.2.2 a-lntercalated Cells

The transporting epithelia of the distal nephron contain a group of cells 

which share certain common features, including large numbers of mitochondria, 

high levels of cytosolic CA II and membrane associated V-ATPases (Brown and
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Breton, 1996; Kim et al., 1990). These cells are known as intercalated cells (ICs). 

At least two types of 1C, named a and p, are found in the mammalian nephron 

distal tubule and CCD where they together make up approximately 40% of the 

total number of cells (Al-Awqati, 1996; Brown and Breton, 1996). However, only a- 

ICs are found in the kidney medulla, including both CMCD (accounting for -40% of 

the epithelial cell population) and IMCD (accounting for -10% of the epithelial cell 

population) (Schuster, 1993).

The a-IC (Figure 4) has a high density of V-ATPases on its apical plasma 

membrane as well as stored in specialised intracellular tubulovesicular 

compartment located near the cell surface. In response to a drop in arterial pH, the 

apical V-ATPase is activated and pumps protons into the urine. This drop in blood 

pH also triggers rapid recruitment and insertion of stored V-ATPases to the apical 

plasma membrane of a-IC to increase H^ secretion (Bastani et al., 1991; Tisher et 

al., 1991). Cn the same side, a P-type ATPase (H^/K^) is also present which might 

contribute to a lesser extent to luminal H^ secretion under certain circumstances, 

such as dietary depletion (Silver and Soleimani, 1999). In addition to the apical 

proton pump, this cell has a basolateral HCOs'/CI" exchanger (AE1), which 

secretes bicarbonate ions into the blood (for reabsorption and buffering) in 

exchange for OF (Alper et al., 1989; Bastani and Gluck, 1996). Proper a-IC 

function is important not only for the maintenance of the body acid-base 

homeostasis but also for the solubility of calcium in urine as well as for the stability 

of calcium in bone. Functional failure of a-IC function results in metabolic acidosis, 

a condition characterised by dRTA as described later in Section 1.3.5.3.

In contrast to the a-IC, the p-IC (Figure 4) has a HCOa'/Cr exchanger 

located at its apical surface which secretes HCO3" into the lumen and a V-ATPase 

at its basolateral side to secrete H^ into the blood (Bastani and Gluck, 1996).
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a-intercalated cell

ATP

ADP Cl-\/-ATPase

ATP
H++

H+/K+ antiporter ADP
CAil

CAIV

InterstltiumLumen

^-intercalated cell

ATP
c i-

C//WCOj- exchangeri 

HCO,-+.

CAII

CAIV

InterstltiumLumen

Figure 4 a- and p-intercalated cell.
V-ATPases pump protons from the cytoplasm into the lumen (a-IC) or blood (p-IC). In the 
cytoplasm, protons are produced together with HCO^ from interaction between CO2 and 
H2O, catalysed by CA II. The resulting HCO3' is reabsorbed into the blood through the 
AE1 (a-IC) or secreted into lumen by the anion exchanger (CIVHCOs ) (p-IC).
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1.3.S.2.3 Localisation of V-ATPase and a4 within the Nephron

The plasma membrane V-ATPase makes a major contribution to 

secretion in several nephron segments (Bastani et al., 1994; Bastani et al., 1997; 

Brown et al., 1992b; Chan and Giebisch, 1981). The expression of plasma 

membrane V-ATPases has been found in the proximal tubule, the loop of Henie, 

the connecting tubule, CCD, OMCD and IMCD (Bastani et al., 1991; Brown et al., 

1988). As mentioned in the above section, the a-IC has a high density of V- 

ATPases at its apical membrane, whereas the p-IC is able to insert V-ATPases 

into its basolateral membrane.

Different observations of the localisation of the a4 subunit in nephron 

segments have been reported. In 2000, Smith et al. observed, for the first time, 

that localisation of a4 was restricted to the apical surface of a-ICs in the collecting 

ducts of the human nephron. This experiment was performed using an antibody 

raised against the last 14 amino acids of the human a4 subunit (Smith et al.,

2000). Later, in 2001, Oka et al. observed that the a4 subunit is localised to both 

a-ICs and p-ICs in the distal portion of mouse nephron (Oka et al., 2001a), which 

the Karet group has reported in the same year (Smith et al., 2001). In addition, a4 

staining was observed, to a lesser extent, at the base of the brush border of 

proximal cells in the initial part of the proximal tubule of mouse nephron (Smith et 

al., 2001). Very recently, Stehberger et al. observed immunostaining for a4 in 

various nephron segments in both human and mouse kidney (Stehberger et al.,

2003). These differences seen in experimental data could possibly have resulted 

from using different techniques for antigen retrieval or tissue fixation.
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1.3.5.3 Recessive Distal Renal Tubular Acidosis

As discussed above, the kidney must excrete the generated from the 

catabolism of an omnivorous diet into the urine to maintain acid-base 

homeostasis. The pH range of urine has between 4.5 and 8.5. In humans, this 

urinary acidification is mainly carried out by the apical proton pump of the a-IC in 

the distal portion of the nephron as described in Sections 1.3.5.2.1 and 1.3.5.2.2. 

Failure or inadequate acid excretion results in type 1 distal renal tubular acidosis 

(dRTA). In RTA, the metabolic acidosis is usually accompanied by hypokalemia 

and hypercalciuria. In untreated cases, the metabolic acidosis leads to other 

conditions such as nephrocalcinosis and osteomalacia (Barzel and Hart, 1973; 

Bastani and Gluck, 1996; Courey and Pfister, 1972). Early diagnosis and adequate 

alkali treatment can reverse the metabolic acidosis, which results in improved 

growth and bone cell function (Domrongkitchaiporn et al., 2002).

dRTA can be inherited in two different forms: autosomal dominant or 

autosomal recessive. In the case of autosomal dominant dRTA (ddRTA) (MIM 

179800), nephrocalcinosis is a common feature whereas osteomalacia is usually 

less prominent. Mutations in the AE1-encoding gene (SLC4A1) are responsible for 

ddRTA in all kindreds reported so far (Bruce et al., 1997; Jarolim et al., 1998; 

Karet et al., 1998). However, recessive dRTA (rdRTA) is rarely the result of 

mutations in this gene (Karet et al., 1998), although there have been a few 

reported cases of rdRTA caused by AE1 mutations in South Asia (Tanphaichitr et 

al., 1998). ddRTA normally presents in adulthood and often has milder symptoms 

compared to rdRTA. rdRTA has historically distinguished into two subtypes: rdRTA 

with progressive bilateral sensorineural deafness (OMIM 267300) and rdRTA with 

preserved hearing (OMIM 602722). rdRTA normally presents at a very young age 

(infancy or early childhood).

42



Both subtypes of rdRTA are associated with mutations in tissue specific 

subunit-encoding genes of the V-ATPase in the collecting duct of the nephron. As 

mentioned earlier in Section 1.3.5.1, mutations in the B1-encoding gene are 

associated with rdRTA with deafness, whereas mutations in the a4-encoding gene 

are associated with rdRTA with milder hearing loss.

1.3.6 Interactions of the a Subunit

Despite the importance of the a subunit to the proton pump, not much is 

known about its protein interactions. However, some evidence regarding this 

aspect has been provided very recently as listed below. Using crosslinking 

techniques (with crosslinking reagent MBP), Xu et al. have provided evidence for 

possible interaction between the E and a subunits, although it has not been 

confirmed by alternative assays (Xu et al., 1999). In addition, Landolt-Marticorena 

et al. demonstrated through a yeast two-hybrid assay that the N-terminal domain 

of Vphip interacts directly with the A subunit and this interaction was further 

confirmed by a co-immunoprecipitation analysis (Landolt-Marticorena et al., 2000). 

In the same study, they also demonstrated an in vitro interaction between the N- 

terminal domain of Vphip and the H subunit (Landolt-Marticorena et al., 2000). 

Because the a subunit forms part of the proton translocation machinery, the 

presence of interactions between this subunit and certain Vi subunits supports the 

a subunit involvement in coupling ATP hydrolysis to proton translocation. On the 

other hand, these associations are likely to contribute to structural support within 

the enzyme, making the a subunit likely candidate for the formation of part of the 

peripheral stalk of V-ATPase. In addition to interacting with some Vi subunits, a 

direct contact between the a and c' subunits was reported through structural 

analysis (Kawasaki-Nishi et al., 2003a). Also, a possible interaction between the a
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and d subunits was suggested from the observation that the d subunit was 

retained in cytosol in yeast cells lacking Vphip (Graham et al., 2000).

In addition to interacting with the component elements of V-ATPase, the a 

subunit was also found to interact with other chemicals or proteins. As mentioned 

earlier, binding of bafilomycin to the a subunit inhibits V-ATPase activity (Bowman 

et al., 1988; Zhang et al., 1994). Very recently. Lu et al. demonstrated interaction 

between the N-terminal domain of human a4 and aldolase, a glycolytic enzyme, 

through yeast two-hybrid library screening (Lu et al., 2003).

1.4 The Aims of the Present Study

I am particularly interested in the a4 homologue of the a subunit of V-ATPase 

because of its essential contribution to renal acid-base homeostasis. However, 

information concerning potential functional or regulatory contributions of this 

tissue-specific paralogue of the mammalian V-ATPase a subunit is scarce. The 

main aim of this project was to characterise the human a4 subunit focusing on 

protein-protein interactions which can help us to determine the biological functions 

of this protein, by situating it relative to other proteins in cellular pathways or 

functional classes. The plan was first to identify potential binding partner(s) of the 

human a4 through library screening using such techniques as Phage display 

and/or yeast two-hybrid systems. Possible interactions identified from the screens 

would be further characterised using other strategies such as pull-down, co- 

immunoprecipitation, and immunochemistry.
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CHAPTER 2 

MATERIALS AND METHODS

2.1 Chemicals, Enzymes and Antibodies

Chemicals of analytical grade or higher were purchased from Sigma, 

BDH/Merck or BioRad. Restriction endonucleases and modifying enzymes were 

purchased from New England Biolabs (NEB) and Tag DNA polymerase and 

PfuTurbo DNA polymerase from Roche and Stratagene, respectively. DNA 

purification kits were from Qiagen. All antibodies used in this study are listed in 

Appendix Table A.1.

2.2 General Buffers, Bacterial Growth Media and Antibiotic Solutions

General buffers {PBS, PBST, TBE, TBS, TAE, TE), bacterial growth media 

(LB, 2x YT, SOC), and antibiotic solutions were mainly obtained from the media 

room in Cambridge Institute for Medical Research building. Recipes are listed in 

Appendix Section A. 1.

2.3 Ceil Strains and Storage

All cell strains used in this project are listed in Appendix Table A.2.

Bacterial and yeast strains were stored as glycerol stocks. Overnight 

cultures were diluted by the addition of an equal volume (bacteria) or 1/3 volume 

(yeast) of sterile 50% glycerol, vortexed, chilled in dry ice and then stored at -80°C.

2.4 Plasmids

All plasmids used in this study are listed in Appendix Table A.4. Maps of 

bacterial expression vectors (pGEX-4T 1 and mini-prseta-max), the Drosophila
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expression vector (pMT/BipA/5-His A) and yeast expression vectors (pSOS and 

pMyr) used in this project are presented in Appendix Figures A.1, A.2, and A.3, 

respectively.

2.5 DNA Analysis

2.5.1 Quantification of DNA Concentration and DNA Storage

DNA concentrations were determined by spectrophotometry using the 

GeneQuant II system (Pharmacia Biotech). Samples were diluted with double 

deionised water (H2 O) and transferred into a 0.5 mm quartz cuvette. Optical 

densities (OD) were taken at 260 nm and 280 nm. Plasmid DNA was kept in Tris- 

01 (10 mM, pH 8.0) or TE buffer and stored at -20°C.

2.5.2 Agarose Gel Electrophoresis of DNA

Depending on the size of the DNA fragments (or plasmids) of interest, 

agarose electrophoresis gels typically contained 1 -2 % ultra pure electrophoresis 

grade agarose in 1x TAE buffer. Prior to casting, ethidium bromide was added to 

the agarose gel solution to give a final concentration of 0.5 pg/ml. DNA samples 

were mixed with 0.2x volume of agarose gel loading buffer [40% (w/v) sucrose, 

0.25% xylene cyanol FF, and 1 mM ethylendiaminetetra-acetic acid (EDTA)] 

before eletrophoresis, which was carried out at 120 V in 1x TAE buffer. 1 kilobase 

(kb) DNA ladder and/or 100 basepair (bp) DNA ladder were loaded parallel with 

the samples in order to estimate the size of the samples. After eletrophoresis, 

DNA was visualised by exposure to UV light on a transilluminator.
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2.6 Purification of DNA

2.6.1 Using Commercial Kits

Purification of plasmid DNA from bacterial cultures, Polymerase Chain 

Reaction (PGR) products from their reaction mixtures and DNA fragments from 

agarose gel slices were carried out using appropriate Qiagen Kits, unless stated 

otherwise, following manufacturer's guidelines.

2.6.2 Phenol/Chloroform Extraction

200-300 1̂ 1 DNA solution was vortexed with an equal volume of 

phenol/chloroform/lsoamyl alcohol (lAA) (25:24:1 in volume) and centrifuged 

[11,000 X g, 2 min, room temperature (RT)] in a microfuge (Eppendorf). The 

supernatant was recovered and re-extracted at least two more times. This 

supernatant was then ethanol precipitated in order to recover the DNA.

2.6.3 Ethanol Precipitation

DNA in solution was precipitated by either the addition of 1/10 volume of 

NaAc (3 M, pH 5.2) or NH4AC (4 M, pH 5.3), and 2-3 volumes of cold (-20°C) 

ethanol followed by incubation at -80°C for 30 min. DNA was recovered in the form 

of a pellet by *centrifugation (15,115 xg , 30 min 4°C). The DNA pellet was washed 

once with 70% ethanol, air-dried, resuspended in the appropriate buffer and stored 

at -20°C.

*AII centrifugation steps were carried out with Beckman centrifuges, unless 

otherwise indicated.
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2.7 Design, Synthesis and Storage of Oligonucleotides (Primers)

Primers for gene cloning and sequencing were designed to contain a GC 

content of higher than 50% if possible. Primer pairs used for gene cloning were 

designed to have similar melting temperatures. In addition, cloning primers were 

also designed to have further sequences at the 5' end, upstream of restriction sites 

in order to gain better digestion of DNA fragments produced using the primers. 

The melting temperature (Tm) value of primers was calculated using the formula: 

4°C X CG content + 2°C x AT content, unless otherwise indicated. All primers were 

synthesised by Invitrogen Life Technologies and were dissolved in H2 O to give a 

final concentration of 0.1 mM and then stored at -20°C. All primers used in this 

study are listed in Appendix Table A.3.

2.8 Polymerase Chain Reaction (PGR) Methods

PCR (Saiki et al., 1985) was carried out using a programmable MJ PTC- 

225 thermal cycle (Techne Ltd.). All PCRs included a negative control where DNA 

template was replaced by H2O.

2.8.1 Standard PCR

A standard PCR was used to produce DNA fragments for cloning and for 

sequencing of positive clones obtained from yeast two hybrid assays. A reaction 

mixture was prepared as described in Table 4. PfuTurbo DNA polymerase was 

included in the reaction mixture, in addition to DNA polymerase, due to its proof­

reading function. The cycling parameters used were as follows, unless otherwise 

stated: 1 cycle for 3 min at 95°C; 35 cycles of [95°C, 0.5 min; *X°C, 0.5 min; 72°C, 

**Y min] and 1 cycle for 10 min at 72°C, (*X = calculated Tm - 4°C and **Y 

depends on the length of the amplified region).
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2.8.2 Long-Range PCR (LR-PCR)

The Expand™ Long Template PCR System (Roche) was used to produce 

DNA fragments longer than 1 kb for cloning, following manufacturer's guidelines. 

Cycling parameters are shown in Table 5.

Number of Cycles
1

10

15

Temperature
92°C
92°C 
X°C 

6 8 °C 
92°C
x°c

6 8 °C (+20 sec/cycle for 
enlongation only)

6 8 °C

Time
2  min
1 0  sec 
30 sec
3 min
1 0  sec 
30 sec
3 min

Table 5 Cycle conditions for LR-PCR.
*X depends on Tm of individual primers

2.8.3 Colony PCR

Colony PCR for screening of recombinant DNA clones was carried out as 

follows: a single colony from a bacterial agar growth plate was resuspended in 2 0  

pi H2O and the resuspension was heated at 95°C for 10 min to release bacterial 

colony DNA. 3 pi of the denatured cell sample was used in a 20 pi PCR reaction 

mixture (Table 4). Cycle conditions were the same as described in Section 2.8.1.

2.9 Site-Directed Mutagenesis

The QuikChange™ Site-Directed Mutagenesis Kit (Stratagene) was used to 

carry out single amino acid changes.
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2.9.1 Plasmid Preparation

Plasmids were purified using Qiagen Qiaprep® Midiprep Kit and used as a 

template vector. Mutagenic primers were designed according to manufacturer’s 

instructions, to create a specific single amino acid change upon expression,.

2.9.2 Temperature Cycling

Three reaction mixtures, using 12, 24 or 60 ng of the template plasmid were 

prepared (Table 4). Each of the reaction mixture was overlaid with 30 pi of mineral 

oil and then submitted to the reaction cycle. The cycling parameters used to create 

a specific single amino acid change were as follows: 16 cycles each of, 95°C for 

0.5 min, 55°C for 1 min and 6 8 °C for 12 min.

2.9.3 Digestion

Following Temperature Cycling, the products were incubated on ice for 2 

min before being submitted to parental methylated DNA template removal by Dpn\ 

restriction enzyme digestion. Digestion was carried out by the addition of 10 units 

of Dpn\ directly to the reaction mixture under the mineral oil overlay followed by 

incubation at 37°C for 1 hr.

2.9.4 Transformation

Following digestion, 1 pi of the Dpn I-treated DNA was transformed into 20 

pi XL-10 Gold chemical competent cells (Stratagene) using the same procedures 

as described in Section 2.10.5.2. Transformants were plated onto LA plates 

containing the appropriate antibiotic and grown overnight at 37°G.
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2.10 Gene Cloning

2.10.1 Digestion of DNA by Restriction Endonucleases

Restriction endonuclease digestion of vector and insert DNA was performed 

according to the supplier's instructions. DNA was cut for 2-16 hrs at 37°C in 1x 

enzyme reaction buffer. After restriction digestion, enzymes were removed using 

either the Qiagen PCR Purification Kit or the Qiagen Gel Extraction Kit. Where 

possible, multiple digestions were performed, if the buffer conditions were 

compatible for both enzymes. Otherwise, serial digestions were performed.

2.10.2 Removal of 5’ Phosphate Group (SAP Treatment)

Following the restriction enzyme digestion, 5' phosphate groups of vector 

DNA were removed using Shrimp Alkaline Phosphatase (SAP) (USB). 1 unit SAP 

per 5 pg DNA was added into the digestion mixture and incubated for 1 hr at 37°C, 

after which the enzyme was inactivated by heating at 65°C for 20 min.

2.10.3 Ligation of insert DNA Fragment into Vector DNA

Prior to ligation reaction, both vector and insert were digested with the same 

restriction enzyme(s) in order to join them at designed positions. All the ligation 

reaction mixtures were carried out in volumes of 2 0  pi and prepared as shown in 

Table 6 . The molar ratio of DNA insert : vector was 3-8:1. The following equation 

was used to calculate the amount of insert needed. For example, if the molar ratio 

of insert : vector is 3:1, the amount of insert X (ng) required for 100 ng of vector:

X (ng) = 3 X - — X size of  insert (bp) 
size of vector (bp)
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Reaction mixture containing no insert DNA provided a negative control. The 

ligation reaction was carried out at 16°C for approximately 16-18 hrs.

Reagent Volume
Vector 100 ng
Insert Xng
1X T4 DNA ligase buffer 2 pi
T4 DNA ligase (20 u/pl) 1 pi
H2 O *Y pi

Total Volume 20 pi

Table 6 Ligation reaction mixture.

*Y depends on the volume of vector and insert used.

Where electroporation was employed for transformation after ligation, the 

ligation mixture was ethanol precipitated. The final DNA pellet was resuspended in 

15 pi H2 O; 5 pi of this resuspension was then used for each electroporation.

2.10.4 Preparation of Bacterial Electro-competent Cells

LA plates being plated with bacterial cells contained, if necessary, 

appropriate antibiotic/s. The plates were incubated at 37°C for 16-18 hrs. A single 

colony from such a plate was used to inoculate 5 ml of LB medium containing the 

same antibiotic/s. This culture was incubated for 16-18 hrs at 37°C with vigorous 

shaking and used to inoculate 400 ml of the same medium, but omitting 

antibiotic/s. The culture was grown at 37°C until the Aeoo reached 0.4 and then 

cooled on ice for 15 min before being centrifugated (4648 x g, 10 min, 4°C). The 

cell pellet was washed 3 times with firstly 400 ml, then 200 ml and finally 10 ml of 

ice-cooled H2O. The final cell pellet was resuspended in 0.5 ml 10% glycerol and 

stored as small aliquots at -80°C after freezing on dry ice.
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2.10.5 Transformation of Bacterial Cells with Bacteriai Piasmid DNA

2.10.5.1 Transformation by Electroporation

A sample of frozen electro-competent cells was allowed to thaw slowly on 

ice. About 1 ng plasmid DNA was mixed with 40 pi of cells. This mixture was 

transferred to a chilled electroporation cuvette (2 mm) and subjected to 

electroporation using Gene Puiser (BioRad) under the following conditions: 

Resistance: 200 Ohms, Capacitance: 25 pF, and Voltage: 2.3 kV. Immediately, 

500 pi of SOC medium was added to the mixture followed by incubation, without 

shaking, at 37°C for 1 hr. After incubation, the transformants were plated onto LA 

plates containing an appropriate antibiotic/s and then grown at 37°C for 16-18 hrs. 

This method typically yielded transformation efficiencies of 1 x 10®'̂ ° transformants 

per pg plasmid DNA.

2.10.5.2 Heat Shock Transformation

A sample of frozen chemical competent cells was allowed to thaw slowly on 

ice. About 1 ng plasmid DNA was mixed with 20 pi of cells and the mixture was 

incubated on ice for 2 min. Cells were then shocked by heating at 42°C for 30 sec 

followed by incubation in 600 pi of SOC medium for 1 hr at 37°C whilst shaking. 

After incubation, the transformants were plated onto LA plates containing the 

appropriate antibiotic/s and incubated at 37°C for 16-18 hrs. This method typically 

yielded transformation efficiencies of 1 x 10®'̂  transformants per pg plasmid DNA.

2.11 DNA Sequencing

Automated DNA sequencing was carried out using an ABI 377 sequencing 

machine according to the standard ABI Prism® Big Dye™ Terminator (BDT) 

protocol.
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2.11.1 Sequencing Reactions

Sequencing reaction mixtures (Table 7) were prepared in microtitre plates, 

The cycling parameters used were: 25 cycles each of [96°C for 10 sec, 50°C for 5 

sec and 60°C for 4 min]. On completion, excess dye terminators in the sequencing 

product mixture were disabled by SAP treatment, which was performed in 1x SAP 

reaction buffer as described in Section 2.10.2.

Reagent Volume Volume
DNA + H2 O 5.5 11 Hl
BDT 2 |Lll 2 jliI
5X Sequencing buffer 2 \x\ 6 111
Primer (10 ^M) 0.5 nl 1 Mi

Total Volume 10 111 20 n\

Table 7 Sequencing reaction mixtures.

2.11.2 Ethanol/lsopropanol Precipitation

Following SAP treatment, sequencing reaction products were precipitated 

using either ethanol or isopropanol, as follows: the reaction mixtures (Table 8) 

were prepared and incubated at RT for 15 min. They were then centrifuged (2413 

X g, 30-40 min, 4°C) before being inverted onto tissues and centrifuged briefly to 

remove the supernatant. 70% ethanol was added to each pellet and centrifuged 

for 20 minutes under the same centrifuge conditions. After the removal of the 

supernatant, pellets were stored at -20°C for up to one month in the dried-state.
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Reagent Volume Volume
Sequencing reaction products low 20 W
*Ethanol/NaAc mixture 80 W -

Isopropanol - 60 111
H2O 20 nl 20 111

Total Volume n o w 100 111

Table 8 Precipitation reaction mixtures.
*Ethanol/NaAc mixture contains 89% (v/v) ethanol + 6.25% (w/v) NaAc (3 M, pH 5.2).

2.11.3 Sequencing Gel Electrophoresis and Result Analysis

A sequencing gel mixture (Table 9) was prepared and assembled onto the 

ABI 377 sequencing machine. Immediately prior to loading, 3 jil of loading dye (1 

in 5 dilution, with formamide, of the ABI sequencing gel-loading dye) was added to 

each sample and the resuspension was heated at 95°C for 3 min followed by 

immediate chilling on ice. 1.7 |il of each sample was loaded onto each well of the 

gel in 1x TBE buffer.

Sequencing results were analysed using either Sequence Navigator or 

Se Quenc/ier software.

Reagent Volume
1OxTBE 3 ml
*Seqtagel AutoMatrix 4.5 27 ml
Ammonium persulphate (APS) 150 nl
N,N,N',N'-tetramethylethylenediamine (TEMED) 21 W

Total Volume 30 mi

Table 9 Sequencing gel mixture.
*Seqtagel AutoMatrix 4.5 was from National Diagnostics Ltd.
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2.12 Protein Quantification and Detection

2.12.1 Quantification of Protein Concentration

Protein concentration was determined either by using the BioRad protein 

assay reagent according to the manufacturer’s protocol with bovine serum albumin 

(BSA) as a standard, or by using spectrophotometry.

2.12.1.1 Using BioRad Protein Assay Kit

When the BioRad Protein Assay Kit was used, 200 pi of 1 in 5 diluted dye 

provided was added to a protein sample of 1 0  pi and the A595 was measured, 

using a microplate reader (Anthos HTII , Anthos Labtec HT2), after holding at RT 

for 5 min. Protein concentration was determined by comparison with a standard 

curve constructed from BSA (concentration ranging between 0.25 mg/ml and 

0.0313 mg/ml) as a protein standard, which was co-assayed with the test protein.

2.12.1.2 Using Spectrophotometry

When the spectrophotometry technique was used, absorbance at 280 nm 

was measured using GeneQuant II system. Protein concentration was calculated 

according to the Lambert-Beer equation:

A = K C

Where, A is the absorbance measured, K (mg/ml) is the extinction coefficient of a 

protein, which can be calculated according to the protein sequence using a programme 

under ExPASy (http://www.up.univ-mrs.fr/~wabim/d_abim/compo-p.html) and C is the 

resulting concentration in mg/ml.
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2.12.2 Sodium Dodecyl Suiphate-Polyacrylamide Gel Electrophoresis (SDS-

PAGE)

Proteins or peptides were analysed by means of SDS-PAGE using a Tris- 

glycine buffer system (Laemmli, 1970) with MiniProtean III™ Electrophoresis 

System (BioRad).

2.12.2.1 Gei Preparation

Glass plates were cleaned with methanol and clamped together, separated 

by fixed spacers. A resolving gel of appropriate acrylamide concentration was 

prepared (Table 10), and poured between the two plates. The gel was overlaid 

with methanol or H2 O and allowed to polymerise for 30 min. When polymerised, 

the methanol was decanted and replaced by a stacking gel solution (Table 10) and 

a comb inserted to produce the loading wells. The use of a stacking gel, which is 

of low acrylamide concentration, allows relatively large samples to be 

concentrated before reaching the resolving gel, increasing the resolution of bands. 

Once polymerisation was complete (at least 30 min), the comb was gently 

removed and the plates were assembled onto the electrophoresis tank of the 

electrophoresis system. 1x electrophoresis buffer [lOx electrophoresis stock 

solution: 3.03% (w/v) Tris-base, 14.4 (w/v) glycine and 1% (w/v) SDS] was poured 

into both the bottom and top tanks.
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RESOLVING GEL STACKING GEL

Reagent 12% Gel 16% Gel 3% Gel
Acrylamide 40% 6 ml 8 ml 0.47 ml
Tris-CI (1 M, pH 8.8) 7.5 ml 7.5 ml -

Tris-CI (1 M, pH 6.8) - - 0.78 ml
SDS (20%) 100 w 100 w 31 W
H2O 6.12 ml 4.12 ml 4.89 ml
APS (10%) 266.7 W 266.7 W 75 W
TEMED 13.3 W 13.3 W 5.2 W

Total Volume 20 ml 20 ml 6.25 ml

Table 10 SDS-PAGE solutions.

2.12.2.2 Sample Preparation

Immediately prior to electrophoresis, 0.2 volumes of 3x SDS sample buffer 

[0.175 M Tris-CI (pH 6.8), 5.14% (w/v) SDS, 18% (v/v) glycerol, 0.3 M dithiothreitol 

(DTT), 0.006% (w/v) bromophenol blue] was mixed with each sample. The 

mixtures were heated at 90-95°C for 3-5 min and cooled to RT before loading.

2.12.2.3 Sample Separation

15-20 W of samples were loaded into each well of the gels immediately prior 

to separation. Appropriate Rainbow Molecular Weight Markers (Amersham) were 

loaded in parallel with all of the samples in order to estimate the size of the 

samples. The electrophoresis was carried out at 120 V-160 V in Laemmli buffer 

(25 mM Tris-base, 250 mM glycine, 0.1% (w/v) SDS) . The gels were then 

subjected to either staining or Western blotting.

2.12.2.4 Gel Staining

When staining with coomassie brilliant blue R250, the gel was incubated in 

an aqueous solution containing 0.1% (w/v) coomassie brilliant blue R250, 10% 

(v/v) acetic acid and 40% (v/v) methanol for 30 min. It was then destained with a

59



solution made of methanol : acetic acid : water (4:1:5 by volume) until the 

background staining disappeared. Both stain and destain procedures were carried 

out at RT.

When SimplyBlue Safe Stain reagent (Invitrogen) was used, the 

manufacturer's instructions were followed.

2.12.2.5 Gel Drying

Following gel destaining, gels were first incubated in drying solution [30% 

(v/v) ethanol, 10% (v/v) acetic acid, 3% (v/v) glycerol] and then packed in a 

sandwich arrangement with Gel Wrap (BDH). The packed gel was fixed into a set 

of frames, and air-dried. All steps were carried out at RT.

2.12.3 Western Blot Analysis

Western blotting was carried out by the method of Towbin (Towbin et al., 

1979). A Trans-Blot Semi-Dry Transfer Cell (BioRad) was used to transfer proteins 

separated by SDS-PAGE onto nitrocellulose membranes (Schleicher & Schuell).

2.12.3.1 Transfer of Proteins to Nitrocellulose Membrane

Following SDS-PAGE, the gel was placed in contact with a protein 

nitrocellulose transfer membrane in a sandwich arrangement surrounded by pads 

of Whatman 3 mm chromatography paper, which had been soaked in transfer 

buffer [0.048 M Tris, 0.039 M glycine, 0.032% (w/v) SDS and 20% (v/v) methanol, 

pH 8.3). Air bubbles were carefully removed. Transformation was carried out at 

0.35 A per blot for 50 min.
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2.12.3.2 Immunodetection of Blotted Proteins

Following blotting, nitrocellulose filters (blots) were blocked in a blocking 

buffer [PBST, 5% dried milk powder (Marvel)] at RT for 1 hr, or overnight at 4°C. 

After blocking, blots were first rinsed briefly in PBST, and then incubated in 

primary antibody diluted with PBST containing dried milk or BSA for Ih r at RT, or 

overnight at 4°C. Secondary antibody conjugated with horse radish peroxidase 

(HRP) was diluted in PBST containing the same milk and applied onto the blots for 

30-60 min at RT. Following each of the antibody reaction stages, blots were 

washed (for 3x10 min each time) in PBST to remove excess antibodies. The blots 

were incubated in enhanced chemiluminescence (ECL) reagents (KPL) according 

to manufacturer’s instructions, drawn to remove excess liquid, covered in Saran 

wrap and the results were visualised on Hyperfilm ECL (Amersham).

2.12.3.3 Stripping of Membranes

If required, blots could be stripped of primary and secondary antibodies 

after immunodetection, and re-used. No signal remaining from the previous 

analysis was detectable after stripping.

After previous detection, filters were wet with PBST and incubated in 62.5 

mM Tris-CI (pH 6.8), 2% (w/v) SDS, and 100 mM fl-mercaptoethanol at 50°C for 

30 min, with occasional agitation. The filters were then washed twice in PBST, for 

10 min each time, at RT, blocked and reprobed.
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2.13 Protein Expression

2.13.1 Expression of Proteins using Bacterial System

2.13.1.1 Expression Vectors

Two E. coli expression vectors, pGEX-4T1 (Pharmacia Biotech) and 

miniprseta-mac (a gift from Dr Jane Clark, Department of Chemistry, University of 

Cambridge) were used to express glutathione S-transferase (GST)- and 

hexahistidine (His)-tagged fusion proteins, respectively. Both vectors are 

constructed to direct the synthesis of foreign polypeptides in E. coli upon induction 

with Isopropyl R-D-thiogalactopyranoside (IPTG). cDNA encoding the protein of 

interest was cloned in frame into either vector and subsequently expressed in E. 

coli bacterial cells.

2.13.1.2 Screening Colonies for Fusion Protein Expression

Screening colonies for fusion protein expression was always performed on 

a small-scale in 10 ml culture volume in order to select the best-expressed colony. 

Cells from the glycerol stock of a clone to be expressed were streaked onto a LA 

plate containing an appropriate antibiotic and incubated overnight at 37°C. Several 

colonies from the plate were randomly picked, each of which was used to 

inoculate 10 ml LB or 2x TY medium containing the same antibiotic. The culture 

was incubated at 37°C with vigorous shaking until the Aeoo reached 0.8. The cells 

were induced with 0.1 mM IPTG, and grown for a further 2 hrs. Bacterial cells were 

pelleted by centrifugation (4,648 x g, 10 min, 4°C), resuspended in an appropriate 

lysis buffer and lysed. Following centrifugation (48,384 x g, 30 min, 4°C), both the 

supernatant and insoluble materials were analysed by SDS-PAGE and Western 

blotting to assess protein expression. The best-expressed colony was chosen for 

optimisation of expression conditions.
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2.13.1.3 Optimisation of Expression Conditions and Large-scaie Expression

Prior to large-scale expression, optimisation of expression conditions was 

carried out on a small-scale in 10 ml culture volume. Investigations were focused 

on the following aspects: using different E. coli strains or expression vectors, 

varying concentration of IPTG as well as temperature and length of time for 

induction.

Once optimum conditions were established, large-scale culture volume 

expression was carried out as follows. 2 ml (or 10 ml) culture containing 

appropriate antibiotic was grown at 37°C for 8-10 hrs and used to inoculate 100 ml 

(or 600 ml) fresh LB (or 2x TY) at 37°C for 16-18 hrs with vigorous shaking. This 

culture was diluted, 1 in 50, with fresh LB (or 2x TY) to 1 litre (or 30 litres, for 

fermentation) and grown at 37°C until the Aeoo reached 0.8. Temperature was 

adjusted, if necessary, just before IPTG was added and induction was carried out 

according to the optimum conditions. Cells were pelleted and stored at -20°C for 

purification. The same bacterial cells containing empty vector provided the 

negative control.

2.13.2 Expression of Protein using Drosophila Cell Line

Expression of a protein of interest in Drosophila Schneider 2 cells (82 cells) 

was carried out using the Drosophila Expression System (DES) Kit (Invitrogen) 

and the manufacture's instructions were essentially followed. A Drosophila 

expression vector, pMT/BiPA/5-His A, was used to produce a secretion fusion 

protein with a hexahistidine tag at the C-terminus.
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2.13.2.1 Solutions and Media

Complete DES expression medium

DES Expression Medium plus 10% (w/v) fetal bovine serum (FBS), 1%

(w/v) penicillin and 1% L-glutamine (2 mM)

Selective medium

Complete DES Expression Medium, 300 pg/ml Hygromycin B (hyg. B) 

Conditioned medium

Supernatant of Cell Culture 

Freezing medium

Conditioned medium/complete DES Expression Medium (1:1 in volume), 

10% (v/v) FBS, 10% (v/v) dimethyl sulphoxide (DMSG)

Solution A (300 jul)

36 pi of 2 M CaCb, 10 pi (1 pg) pCoHygro vector, 42 pi (19 pg) plasmid, 

212 pi of HzO

Solution B {2x HEPES solution)

50 mM N-(2-hydroxyethyl)piperazine-N'-(2-ethanesulphonic acid) (HEPES),

1.5 mM Na2 HP0 4 , 280 mM NaCI, pH 7.1 

Transfection mix

Solution A was added dropwise into solution B with continuous mixing until 

solution A had depleted. The resulting solution was incubated at RT for 30-40 min 

until a fine precipitate had formed.

2.13.2.2 Cell Culture

Cell lines were cultured in complete DES expression medium at 25°C

without CO2 . At a density of 6-20 x 10® cell/ml, cells were subcultured into fresh

medium, which was made by 1 in 2 dilution of the conditioned medium with
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complete DES expression medium. Penicillin was included in the complete DES 

expression medium to avoid contamination.

2.13.2.3 Storage and Recovery of Cells in Liquid Nitrogen

Aliquots of S2 cells were stored in liquid nitrogen at a density of 1.1 x 10  ̂

cells/ml (in freezing medium) following overnight freezing at -80°C.

To recover cells from liquid nitrogen, an aliquot was thawed quickly at 37°C, 

transferred to a flask containing complete DES expression medium, and then 

incubated overnight. Following centrifugation, cells were collected, resuspended in 

complete DES expression medium and cultured normally as described in Section 

2.13.2.2.

2.13.2.4 Selection of Stable Cell Lines

Stably transfected cells were selected using the selection vector 

pOoHYGRO, which contains the hyg resistance gene.

Freshly made transfection mix was added dropwise to cells with a density of 

between 1.0-2.0 x 10  ̂ cells/ml in a 35 mm petri dish and incubated for 24 hrs. 

Following centrifugation, cells were collected, washed with complete DES 

expression medium, resuspended in selective medium, replated back into the 

used petri dish and then incubated. The selective medium was changed every 4-5 

days up to 4 weeks before expansion.

2.13.2.5 Expression

For induction, CUSO4 was added to a final concentration of 500 pM and the 

culture was incubated under the same conditions as before. Both supernatant and
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cells were collected every 24 hrs immediately after incubation up to the 5̂*̂  day and 

analysed by Western blotting.

2.13.2.6 Preparation of Genomic DNA from the S2 Cells

S2 cells from approximately 10 ml culture were pelleted by centrifugation 

and resuspended in a 200 pi low salt buffer containing 10 mM Tris-CI (pH 7.4), 10 

mM KOI, 10 mM MgCb, and 2 mM EDTA (pH 8.0). Following a brief vortex, 20 pi 

of 10% SDS was added to the mixture, which was then incubated for 2 hrs at 

50°C. Phenol/chloroform extraction was performed, followed by ethanol 

precipitation, as described in Sections 2.6.2 and 2.6.3. The final pellet was 

resuspended in 20-50 pi of TE buffer, followed by the addition of 1 pi of RNase A 

(1 mg/ml). This genomic DNA preparation was stored at -20°C.

2.14 Protein Purification

2.14.1 Purification of GST Fusion Proteins

Expressed cells were re-suspended (about 5 ml buffer per gram of cells) in

an ice-cold lysis buffer containing PBS, 2 mM EDTA, 0.1% p-mercaptoethanol, 1

pM phenylmethylsulfonyl fluoride (PMSF) and protease inhibitor tablet (EDTA free,

Roche). Cell lysis was achieved by sonication for 18-36 x 10 sec depending on the

volume of cell suspension. In the majority of cases, GST fusion proteins are

soluble under non-denaturing conditions so that they can be purified from crude

bacterial lysates, under native conditions, by affinity chromatography on

immobilised glutathione. Therefore, cell lysates were centrifuged (48,384 x g, 30

min, 4°C), and supernatants were collected followed by purification using either

Glutathione Sepharose 4B slurry or GSTrap pre-packed column (Amersham

Bioscience) according to manufacturer’s guidelines. Bound protein was eluted with
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freshly made glutathione solution [20 mM of glutathione (reducing form), 50 mM 

Tris-CI (pH 8.0)] at RT. The eluates were dialysed to remove glutathione and 

concentrated, if necessary, using Vivaspin 20 columns (5000 MWCO) 

(Vivascience), followed by analysis on both SDS-PAGE and Western blotting.

2.14.2 Dialysis

In most cases, dialysis was carried out using dialysis membrane tubing 

(3500 MWCO) (Spectrum Laboratories) with at least two buffer changes of greater 

than 50 times the volume of the sample. However, for dialysis of small sample 

volumes, (< 3 ml), dialysis cassettes (Pierce) were used. When a dialysis 

technique was used for protein refolding, the concentration of a solution containing 

the protein that is to be refolded was adjusted into the 10-50 pg/ml range prior to 

the dialysis.

2.14.3 Thrombin Digestion

To remove GST from GST fusion proteins, thrombin was added (10 u 

thrombin per 1 mg protein) and incubated for 16-18 hrs at RT. In order to stabilise 

thrombin, Ca^^ was included, at a final concentration of 1-5 mM. The digestion was 

stopped by addition of PMSF to a final concentration of 0.2 mM followed by 

incubation for 15 min at 4°C. The digestion mixture was then loaded onto high 

performance liquid chromatography (HPLC) column for further purification as 

described below.

2.14.4 Purification using a MS Linked HPLC Technique

HPLC purification was kindly performed by Dr Aiwu Zhou in the Department 

of Haematology, University of Cambridge.
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A C18 HPLC column (Phenomenex, PRODIGY 5u 0DS3, 21.2mm x 250mm, 

100Â) was equilibrated with 5% (HPLC grade) acetonitrile (MeCN) + 0.1% 

trifluoroacetic acid (TFA). A thrombin digestion mixture of a GST fusion protein 

was then injected onto the column followed by a gradient wash: starting at 5% 

MeCN + 0.1% TFA and ending at 100% MeCN + 0.1% TFA. The protein was 

eluted across a gradient of 20-60% MeCN in 0.1% TFA and then lyophilised and 

stored at -80°C.

The purity and molecular weight of the eluted protein was analysed by liquid 

chromatography-mass spectrometry (LC-MS) (HP1100 coupled with LCQ, 

Finnigan MAT) which was kindly performed by Dr Hui Hong in the Department of 

Chemistry, University of Cambridge.

2.14.5 Purification of His-tagged Fusion Proteins

Expressed bacterial cells were resuspended in ice-cold lysis buffer 

containing PBS, 10 mM imidazole, 1 pM PMSF and protease inhibitor tablet, pH 

8.0. Lysozyme was then added, to a final concentration of 0.35 mg/ml, and 

incubated at RT for 30 min. Cell lysis was achieved by sonication. If the expressed 

fusion protein was in the form of inclusion bodies, the insoluble materials 

separated by centrifugation were collected and solubilised with a buffer containing 

PBS, 6 M urea and 10 mM imidazole pH 8.0 for 30 min at 4°C. Following 

centrifugation (48384 x g, 30 min, 4°C), the supernatant was collected. Ni-NTA 

agarose resin (Qiagen) was added into the supernatant and incubated for 1 hr at 

4°C. The resin containing bound protein was washed 4 times with a solution 

containing PBS, 30 mM imidazole and 6 M urea (pH 8.0). Bound proteins were 

eluted with PBS, 300 mM NaCI, 500 mM imidazole and 6 M urea, pH 8.0. The 

eluates were first analysed on SDS-PAGE and Western blotting for assessment of
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the fusion protein expression and purification before being submitted to protein 

refolding using either a dialysis technique or commercially available protein 

refolding kit (see the following Section for details).

If an expressed His-tagged protein was soluble, cleared cell lysate was 

collected and purified using the same resin, but under native conditions. In this 

case, all buffers used were the same as above but in the absence of urea.

2.15 Protein Refolding

Refolding of protein from inclusion bodies was carried out using a Protein 

Refolding Kit (Novagen), with some modifications to the manufacturer's guidelines 

as follows.

2.15.1 Buffers and Solutions

Resuspension buffer

20 mM Tris-CI (pH7.5), 10 mM EDTA, 1% Triton X-100, 5 mM DTT, 1 mM

PMSF

Solubilisation buffer

50 mM 3-[cyclohexylamino]-1-propanesulfonic acid (CAPS) (pH 11.0), 0.3% 

(w/v) N-lauroylsarcosine, 1 mM DTT 

Dialysis buffer

20 mM Tris-CI (pH 8.5), 0.1 mM DTT

2.15.2 Purification and Solubilisation of Inclusion Bodies

Purification of inclusion bodies contained in insoluble materials was carried 

out as follows. After cell lysis (Section 2.14.5), DNase I was added, to a final 

concentration of 1%, and incubated at 37°C for 1 hr followed by centrifugation
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(48,384 X g, 30 min, 4°C). The insoluble materials were collected and purified by 

repeatedly resuspending (with the resuspension buffer), sonicating and 

centrifugating the materials until the inclusion bodies, as analysed by SDS-PAGE, 

were clean.

Solubilisation of the inclusion bodies was achieved by mixing them with 

solubilisation buffer, followed by incubation at RT for 3 hrs. Insoluble materials 

were removed by centrifugation (48,384 x g, 30 min, RT) and the supernatant was 

carefully collected and submitted for two dialysis at 4°C overnight and then for 3 

hrs, both of which were against 4 litres of dialysis buffer.

2.16 Human Kidney Protein Fractionation

2.16.1 Preparation of Crude Cytosolic and Membrane Protein Fractions

Samples of normal human kidney were obtained from nephrectomy 

specimens resected due to renal tumours. Informed, written consent was obtained, 

with the approval of the Histopathology Department at Addenbrooke’s Hospital, 

Cambridge's Tissue Bank Committee. 1 g of snap frozen kidney tissue was 

chopped in liquid nitrogen and transferred into 3.5 ml of ice-cold homogenisation 

buffer [10 mM Tris-CI (pH 7.4), 150 mM NaCI, 2 mM PMSF, 1 mM ethyleneglycol- 

bis[U-aminoethyl etherl (EGTA), 1 mM EDTA, 1 mM DTT, protease inhibitor 

cocktail tablet] followed by homogenisation at 15,000 rpm with a Polytron® 

homogeniser (Kinematica). The homogenate was centrifuged (1000 x g, 10 min, 

4°C) to remove nuclei and cell debris. Following collection of the supernatant, a 

further centrifugation (100,000 x g, 1 hr, 4°C) was performed to separate cytosolic 

and crude membrane fractions. The pelleted membrane fraction was resuspended 

in the same homogenisation buffer and both fractions were stored in small aliquots 

at -80°C.
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2.16.2 Solubilisation of Human Kidney Membrane Proteins

Based on earlier work (Gluck and Caldwell, 1987), human kidney 

membrane proteins prepared as described above, were solubilised in a 

solubilisation buffer containing 10 mM Tris-CI (pH 7.4), 1 mM EDTA, 1 mM DTT, 

10% glycerol, either 1% n-Nonyl-p-D-glucopyranoside (n-NDG) or 0.6% (3-[(3- 

cholamidopropyl)dimethylammonio]-1-propane-sulphonate (CHAPS) or both, and 

protease inhibitor cocktail tablet. Following gentle rotation, solubilisation (for 30 

min) and centrifugation (100,000 x g, 1 hr) were applied in order to recover the 

supernatant. All steps were carried out at 4°C.

2.17 Circular Dichroism (CD) Spectroscopy

The secondary structures of expressed proteins were analysed with far-UV 

CD spectroscopy. After a protein solution was filtered through a polyethersulfone 

membrane, the CD spectra were measured by Jasco J-810 spectropolarimeter at 

20°C (or 22°C). The concentration of the protein was normally adjusted to a range 

of 0.20-1 mg/ml before measurement. The cell length used was 1 mm. Data were 

collected every 0.5 nm with a 1 nm bandwidth and a 1 sec time constant. Scan 

speed was 50 nm/min. Ten scanning spectra were averaged for each sample.

2.18 N-terminal Sequence Analysis

N-terminal sequence analysis was kindly performed by Mr M. Weldon in the 

Protein and Nucleic Acid Chemistry Facility in the Department of Biochemistry, 

University of Cambridge.
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2.19 Identification of Protein Ligands

2.19.1 Phage Display Random Peptide Library Screening

The identification of short peptide sequences that are able to bind to a 

protein of interest was performed with the Ph.D.-7™ and Ph.D.-12™ Phage 

Display Random Peptide Libraries (NEB). Experimental procedures were carried 

out according to manufacturer's guidelines but with some alterations.

2.19.1.1 Buffers, Solutions and Media

In this section, all concentrations expressed as “%" are in w/v and all media 

and solutions were prepared in H2 O and then sterilised by autoclaving, unless 

otherwise indicated.

Agarose top

10 g/l bacto-tryptone, 5 g/l yeast extract, 5 g/l NaCI, 1 g/l MgCl2-6H20, 7 g/l 

agarose 

Blocking buffer

0.1 M NaHCOs (pH 8.6), 0.5% BSA, 0.02% NaNs. Filter to sterilise.

Elution buffer (pH 2.2)

0.2 M Glycine-HCI, 1 mg/ml BSA 

Iodide buffer

10 mM Tris-CI (pH 8.0), 1 mM EDTA, 4 M Nal 

iPTG/Xgai plates

0.5% IPTG, 0.4% Xgal contained in LA plates 

Polyethylene gIvcol/NaCI solution

20% Polyethylene Glycol-8000 (PEG-8000), 2.5 M NaCI 

ABTS solution (pH 4.0)
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0.022% (w/v) 2,2’-azino-bis[3-ethyIbenzthiazoline 6-sulphonic acid]

diammonium (ABST), 50 mM sodium citrate, 0.05% H2O2

2.19.1.2 Biopanning

Target protein was diluted in 0.1 M NaHCOs (pH 8.6) to a final concentration 

of 0.1 mg/ml. 10-15 pg of the protein was coated onto a micro-plate well at 4°C 

overnight in a humidifier. Unbound protein was removed and the well was blocked 

with blocking buffer for 2 hrs at 4°C. Following blocking, the well was washed 6 

times with TBS containing 0.1% Tween 20 (TBST). 10 pi of the original phage 

peptide library containing about 2 x 1 0 ”'”' phage virions was diluted with 100 pi 

TBST and added into the blocked well for the first round of panning. After 

incubation of 1 hr at RT, unbound phage was removed and the well was washed 

10 times with TBST. Specifically bound phage was eluted and submitted for 

amplification in E. coli ER2738 strain (see the following Section for details of phage 

amplification). About 10̂  ̂ amplified phage virions were used for the next round. 

The whole procedure was repeated three to four times, individual phage clones 

were isolated, as described in Section 2.19.1.4, and characterised by DNA 

sequencing. However, the Tween 20 concentration of the TBST was increased 

from 0.1% to 0.5% from the 2"^ panning onwards to reduce non-specific phage 

binding.

2.19.1.3 Phage Amplification and Titration

Phage Amplification

A single ER2738 colony was used to inoculate 20 ml LB medium containing 

tet (LB-tet) at 37°C until Aeoo reached -0.2. Phage eluate from a panning was 

added into the culture and grown for a further 4.5 hrs before centrifugation (12,000
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X g, 10 min, 4°C). The supernatant was collected and re-spun under the same 

conditions. To the upper 80% of the supernatant, 1/6 volume of PEG/NaCI solution 

was added and the mixture was incubated overnight at 4°C to precipitate phage 

particles. Following centrifugation (12,000 x g, 15 min, 4°C), the resulting pellet 

was resuspended in 1 ml of TBS. Further precipitation of the phage particles from 

the 1 ml resuspension was carried out by the addition of 1/6 volume of PEG/NaCI 

followed by incubation of the mixture on ice for 1 hr. After centrifugation (16,000 x 

g, 10 min, 4°C) phage particles were collected and re-suspended in 200 pi of TBS 

containing 0.02% NaNs. This amplified phage eluate was stored at 4°C.

Phaae Titration

A single ER2738 colony was used to inoculate LB-tet medium at 37°C until 

the Aeoo reached -0.5. 200 pi of the culture was separately mixed with 5 pi, 10 pi, 

25 pi, 50 pi, 100 pi and 250 pi of a 1 in 10® dilution of the amplified phage eluate. 

Each mixture was first incubated at RT for 5 min, then mixed with 3 ml pre-melted 

agarose top (45°C). The resulting mixture was immediately poured onto pre­

warmed (37°C) LB/IPTG/Xgal plates followed by incubation overnight at 37°C, 

before counting the plaques the following day. The phage titer was expressed as 

plaque-forming units (pfu) per 10 pi of phage resuspension.

2.19.1.4 Isolation Phage DNA for Sequencing

Individual phage clones were amplified as described above, and pellets 

were resuspended thoroughly in 100 pi iodide buffer containing 250 pi ethanol, 

followed by incubation for 10 min at RT to precipitate single-stranded phage DNA. 

After centrifugation, pellets were first washed with 70% ethanol, air-dried and 

resuspended in 10 pi Tris buffer (10 mM, pH 8.5). Standard sequencing reactions 

were carried out using 5 pi of the phage DNA with primer 19 (Table A.3).
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2.19.1.5 Phage ELISA

The specificity of binding of bound phage to target protein was confirmed by 

enzyme linked immunosorbent assay (ELISA), which was carried out essentially 

under the same conditions as those used in the panning procedures. 96-well 

plates were coated with 10-15 pg of the target protein in 0.1 M NaHCOs (pH 8.6), 

at 4°C overnight in a humid box. Excess protein was removed and wells were first 

blocked with the blocking buffer for 1.5 hrs at 4°C, and then washed 6 times with 

TBST. Serial dilutions of the consensus sequence displaying phage were added 

into the wells and incubated at RT for 1.5 hrs, followed by 6 washes with TBST. 

Non-specific binding was evaluated in parallel wells lacking the target protein.

For detection, HRP conjugated anti-MIS antibody diluted 1:5000 in PBST 

containing 2% Marvel was added into each well and incubated for 2 hrs at RT. 

Following 6 washes in PBST, ABTS developing solution was added to each well, 

and incubated at RT until a suitable green colour had formed. The A4 0 5 value was 

then measured.

2.19.2 Yeast Two-hybrid (Y2H) Assay

Y2H assay was carried out using the CytoTrap two-hybrid system 

(Stratagene). cDNA encoding the protein of interest (bait protein) was cloned into 

the pSOS vector, and cDNA libraries containing inserts encoding target proteins 

were cloned into the pMyr vector.

2.19.2.1 Buffers, Solutions and Media

In this section, all media and buffers/solutions were prepared with dHaO and 

H2 O, respectively, and sterilised by autoclaving unless stated otherwise. All 

concentrations expressed as “%” are in w/v.
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10x dropout solution [without uracil and leucine (-UL1)

0.03% L-isoleucine, 0.15% L-valine, 0.02% L-adenine hemisulphate salt,

0.05% arginine HCI, 0.02% L-histidine HCI monohydrate, 0.05% L-lysine HCI,

0.02% L-methionine, 0.05% L-phenylalanine, 0.2% L-threonine, 0.05% L-

tryptophan, 0.05% L-tyrosine, 0.1% L-glutamic acid, 0.1% L-Aspartic acid, 0.04%

L-serine. Filter to sterilise.

LiSORB solution

100 mM LiAc, 10 mM Tris-CI (pH 8.0), 1 mM EDTA, 1 M sorbitol.

PEG/LiAc solution

10 mM Tris-CI (pH 8.0), 1 mM EDTA (pH 8.0), 100 mM LiAc (pH 7.5), 40% 

PEG 3350.

YPAD broth

10 g/l yeast extract, 20 g/l bacto peptone, 20 g/l dextrose (D-glucose), 0.04 

g/l adenine sulphate.

SD/Glucose medium (-UL) rSD/Glc(-UL)1

0.17 g/l yeast nitrogen base without amino acid, 5 g/l ammonium sulphate, 

20 g/l glucose, 1x dropout solution.

SD/GIc medium [without leucine PL) /o r  uracil (-LDl

SD glucose medium (-UL) plus 0.2 g/l uracil / or 1 g/l leucine 

SD/Galactose medium (-UL) FSD/GaK-UDI

0.017% yeast nitrogen base without amino acid, 0.5% ammonium sulphate, 

2% galactose, 1% raffinose, 1x dropout solution.

Solid agar plate

Solid agar plates were of identical composition to that of liquid medium but 

with the addition of Bacto agar. YPAD plates were composed of YPAD broth plus
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2% Bacto agar and all other solid SD glucose/galactose plates were composed of 

relative liquid medium with the addition of 1.7% Bacto agar.

2.19.2.2 Preparing Yeast Competent Cells

The following method yields 6.8 ml competent cells with one preparation. 4 

to 5 colonies of yeast cdc25H (strain a or a) from YPAD plates were used to 

inoculate 50 ml of fresh YPAD broth at 25°C for about 18 hrs (Aeoo >1)-  The 

appropriate volume of culture was diluted to 300 ml with YPAD until the Aeoo 

reached 0.2, before being followed by a 3 hr-incubation at 25°C to achieve ODeoo > 

0.7. After centrifugation (1000 x g, 5 min, 25°C), the cell pellet was collected, 

washed once in H2O, resuspended in LiSORB solution, and incubated for 30 min 

at RT before being subjected to centrifugation. The pellet was resuspended in 300 

pi of LiSORB, to which 600 pi of LiSORB solution containing 4% (v/v) denatured 

salmon sperm DNA was added, followed by the addition of 5.4 ml PEG/LiAc 

solution and 530 pi of DMSO. The mixture containing freshly made yeast 

competent cells was used immediately for transformation.

2.19.2.3 Transformation of Yeast Competent Cells

Mixtures of 100 pi yeast competent cells, and either 100 ng of a plasmid 

(single transformation) or 300 ng of each plasmid (co-transformation), were 

prepared followed by the addition of 2 pi of 1.4 M p-mercaptoethanol. After 

incubation at RT for 30 min, cells were heat shocked at 42°C for 20 min, followed 

by incubation for 3 min on ice. Cells were pelleted by centrifugation, resuspended 

in 0.5 ml 1 M sorbitol solution and plated out onto the appropriate plates, which 

were then incubated at RT until the colonies became visible. Transformation
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efficiency was expressed as colony-forming units (cfu) per pg of plasmid DNA 

transformed.

2.19.2.4 Assessment of Bait Constructs

All bait plasmids were subjected to the recommended control tests to verify 

suitability of the bait plasmids for CytoTrap interaction assay. Bait plasmid was co­

transformed with empty pMyr vector into cdc25H competent cells before being 

plated onto a SD/Glc(-UL) agar plate. After 4-5 day incubation at RT, the colonies 

that appeared were picked up and each of them was patched onto two SD/Gal(- 

UL) agar plates and two SD/Glc(-UL) agar plates. One plate each was incubated 

at 37°C and the others were at RT. If no colonies appeared on SD/Gal(-UL) agar 

plates after 5-day incubation at 37°C, the bait construct was deemed suitable to be 

used in this system, otherwise not.

2.19.2.5 Library Screening and Selection of Positive Colonies

40 pg of bait plasmid were co-transformed with the same amount of a cDNA 

library into the cdc25H (strain a) competent cells, plated onto SD/Glc(-UL) plates 

and incubated at RT for 48 hrs. Transformants were replicated onto SD/Gal(-UL) 

plates and incubated at 37°C for up to ten days. Colonies, termed interactor 

candidates, were picked from the plates incubated between 6-10 days. pSos 

vector replaced the bait plasmid as a negative control.

The interactor candidates were patched on SD/Glc(-UL) plates followed by 

incubation for 48 hrs at RT to repress GAL1 promoter-driven expression from the 

pMyr library. After incubation, cells were patched onto two SD/Glc(-UL) and one 

SD/Gal(-UL) plate. One plate of each type was incubated at 37°C and the 2"^ 

SD/Glc(-UL) plate was incubated at RT for 48 hrs. This patching test was
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proceeded one more time from cells grown on the 2"^ SD/Glc(-UL) plate at RT. 

Only patches, which were grown twice on SD/Gal(-UL) plates, but not on SD/Glc(- 

UL) at 37°C, were selected as putative positives.

2.19.2.6 Mating Test to Verify the Putative Positives

To prepare cells for mating, the bait vector in the putative positives must be 

removed. This procedure is known as curing. To achieve this, a putative positive 

clone was used to inoculate SD/Glc(-U) liquid medium for 2 days at 25°C, then 

plated onto SD/Glc(-U) plate and incubated at RT for a further 4 days. The single 

colony obtained was then plated onto both SD/Glc(-U) and SD/Glc(-L) plates. 

Following incubation at RT for about 4 days, clones that were grown on SD/Glc(- 

U) plates only [SD/Glc(-U)'*], but not on SD/GIc (-L) plates [SD/Glc(-L)" ] were 

selected for mating tests.

For mating tests, each selected cured putative positive (in stain a), i.e. 

SD/Glc(-L)"(-U)"^ clones, was co-patched with either the yeast cells/H20 

suspension containing bait construct or pSOS Col I, which was provided by the 

system as a negative control, (both were in Strain a) on PYAD plates. Following 

incubation at RT for 24 hrs, the mated cells were patched onto two SD/Glc(-UL) 

and two SD/Gal(-UL) plates. One plate of each type was incubated at 37°C and 

the 2"^ plate of each type incubated at RT for at least 5 days. The cured putative 

positives which grew at 37°C on SD/Gal(-UL) plates mated with bait containing 

cells, but not pSOS Col I containing cells, termed Positive clones. These were 

then submitted to plasmid isolation followed by sequencing analysis.
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2.19.2.7 Plasmid Isolation and Sequencing Analysis

Positive clones containing only pMyr cDNA plasmid were resuspended 

thoroughly in 100 \i\ TE buffer followed by addition of 25 pi of 5 M NaCI, 5 pi of 

20% SDS, and 130 pi of acid-washed glass beads (0.5 mm) (Sigma). 

Phenol/chloroform extraction was carried out, followed by precipitation using a 

solution containing 25 pi of 5 M NaCI and 340 pi of 100% ethanol. The final DNA 

pellet was resuspended in 20 pi H2O; 1 pi of this resuspension was then used in a 

20 pl-standard PCR reaction (Table 4); 5 pi of the PCR product was subsequently 

used in a sequencing reaction.

2.20 Protein Labelling: Biotinyiation of Protein

Lyophilised protein was dissolved at 0.5 mg/ml in H2 O. A/-(5-aminopentyl) 

biotinamide (biotin cadaverine) (Molecular probes), was dissolved in 0.1 M 1-ethyl- 

3-(3-dimethylaminopropyl) carbodiimide, hydrochloride (EDAC) to a final 

concentration of 2.4 mg/ml. Biotin cadaverine/EDAC solution was added to 50 pi of 

the protein solution, containing 25 pg of the protein, and incubated at RT for 1 hr. 

Excess biotin cadaverine was quenched by the addition of 1 M NaAc (pH 5.0), 

followed by incubation at RT for 2 hrs. Water replaced the protein as a control. The 

labelled samples were stored at -20°C.

2.21 Characterisation of Protein-Protein Interactions

2.21.1 Affinity Pull-down Assay of Protein-Protein Interaction

Affinity pull-down assay between a bead-bound protein and either another

purified protein or a tissue extract was achieved as follows. Samples were mixed

and incubated for 1-18 hrs at 4°C with gentle rotation. The beads were collected

by centrifugation (200 x g, 2 min, 4°C) and washed (4x 5 volumes) with ice-cold
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PBST or PBS plus 0.1% Tween 20. Bound proteins were eluted from the beads by 

boiling in SDS sample buffer for 5-10 min at 95°C and the supernatants were 

either spotted onto nitrocellulose membrane or subjected to SDS-PAGE. 

Appropriate primary antibody was used to probe the spotted membrane or 

Western blots according to standard methods.

2.21.2 Assay for Protein Immunoreactivity in Human Kidney

Protein immunoreactivity in human kidney was tested as follows. 10-40 pg 

of each human kidney cytosolic and membrane protein fractions, prepared as 

described in Section 2.16.1, were subjected to 12% SDS-PAGE. Western blots 

were probed using appropriate antibodies according to the standard methods.

2.21.3 Co-lmmunoprecipitation Assay in Human Kidney

2.21.3.1 Preparation of Affinity Agarose Gel

Immobilisation of antibody onto agarose beads using the Seize Primary 

Mammalian Immunoprécipitation Kit (PIERCE Biotechnology) was essentially 

carried out according to the manufacturer's guidelines.

Briefly, 200 pi of 50% agarose beads was mixed with 60 pg of the affinity 

purified antibody in coupling buffer (0.1 M Na3P0 4 , 0.15 M NaCI, pH 7.2) followed 

by the addition of sodium cyanoborohydride, a chemical used for covalently 

coupling the amine group of the antibody to the beads. After overnight incubation 

at 4°C, excess antibody was removed by washing 6 times with 1 M NaCI. The 

antibody-coupled beads were washed 3 times with binding buffer (8 mM Na3 P0 4 , 

2 mM K 3 P O 4 ,  10 mM KCI, pH 7.4) and then stored in 200 pi of the binding buffer 

containing 0.02% NaN3 at 4°C.
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2.21.3.2 Co-lmmunoprecipitation

30 pi of unconjugated beads (50%) from the same kit were added to 

solubilised human kidney membrane fraction (see Section 2.16.2 for details), and 

incubated for 1 hr. These beads were replaced by 50 pi of the antibody-coupled 

beads prior to overnight incubation at 4°C. The beads were then washed three 

times with 1 ml of buffer containing 20 mM Tris-CI (pH 7.4), 5 mM NaNg and either 

0.3% n-NDG or 0.3% CHAPS or both; then a further 3 times with the same buffers 

containing 500 mM NaCI; and then 3 final times with buffers without NaCI. Bound 

proteins were eluted from the agarose beads by boiling in SDS sample buffer at 

95°C and supernatants were subjected to SDS-PAGE. Western blots were probed 

using the appropriate antibodies according to standard methods.

2.22 Binding Affinity Study by Surface Plasmon Resonance (SPR)

Binding affinity study of a protein-protein interaction by SPR was carried out 

with great help from Dr Babak Javid in the Department of Medicine, University of 

Cambridge.

Binding analysis was performed on a BIAcore™ 2000 biosensor system 

(Pharmacia Biosensor AB) using SPR measurements. A carboxymethylated 

sensor chip (type CM5) was activated with 1:1 mixture of 0.4 M N-ethyl-N'-(3- 

dimethylaminopropyl) carbodiimide (EDC) and 0.1 M N-hydroxysuccinimide (NHS) 

in H2O. Protein X (ligand) was then immobilised on the sensor chip by amine- 

coupling according to the manufacturer's instructions. Un reacted sites were 

blocked with 1 M ethanolamine/HCI (pH 8.0). Control flow cells were activated and 

blocked with absence of the ligand. The flow cells were routinely equilibrated with 

running buffer (PBS, 0.005% surfactant P20). Protein Y (analyte) was diluted in 

the running buffer and allowed to interact with the sensor surface by a 180-second
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injection. Seven different concentrations (7.5-250 |xM) of the analyte were injected 

at a flow rate of 10 pi per min at 25°C. The data were fitted to a 1:1 binding 

equilibrium model using Graf it (Erithacus software).

2.23 Immunohistochemistry

2.23.1 Tissue Section Preparation

Kidney tissue sections were kindly prepared by Dr R Al-Lamki in the 

Department of Medicine, University of Cambridge.

Human kidney Cortico-medullary sections < 1 mm thick were embedded in 

OCT embedding compound and snap-frozen in liquid nitrogen-cooled isopentane. 

5 pm sections were cryostat-cut and thaw-mounted on APES-coated glass slides. 

Sections were stored at -80°C until use.

2.23.2 Immunodetection

Sections were fixed in 100% methanol at -20°C for 5 min and rehydrated by 

a 5 min immersion in TBS (pH 7.5) containing 0.01% Tween 20 (TBST). All 

subsequent incubations and rinses were in TBST. Non-specific antibody binding 

was blocked by incubation in blocking buffer [TBST, 10% fetal calf serum (PCS)] 

for 15 min. Primary antibodies were applied at 1:100-1:5000 dilutions overnight at 

4°C in the blocking buffer. Appropriate fluorescent conjugated secondary 

antibodies were applied at 1:100 dilutions for 40 min at RT. Following mounting in 

Citifluor mounting medium, bound antibodies were visualised using a Leica TCS- 

NT Confocal Laser Scanning Microscope (work with help from Dr R Al-Lamki). 

Replacement of primary antibody with the appropriate pre-immune serum provided 

negative controls.
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CHAPTER 3 

EXPRESSION AND PURIFICATION OF a4(N), a4(Loop2) AND 

a4(C)

3.1 Introduction

The a subunit of the proton pump is deemed crucial for the coupling of ATP 

hydrolysis (Vi) and proton transport (Vo). As noted from the yeast orthologue 

Vphip, evidence obtained from several studies has revealed an essential role of 

this subunit in proton translocation activity (Leng et al., 1996; Sato and Toyama, 

1994). In addition to this, the N-terminal domain of the a subunit is likely to 

contribute to the formation of the peripheral stator, and also to the control of 

targeting and in vivo dissociation of the V-ATPase (Kawasaki-Nishi et al., 2001c). 

Furthermore, the soluble C-terminal tail of the a subunit has been shown to play a 

potential role in the assembly, stabilisation and targeting of the a subunit (Leng et 

al., 1998). However, information concerning potential functional or regulatory 

contributions of the N- or C-terminal domains of the different tissue-specific 

homologues of the mammalian V-ATPase a subunit is scarce.

I have been particularly interested in the a4 paralogue because of its 

essential contribution to renal acid-base homeostasis. Noting firstly the suggested 

importance of both domains (as outlined above), and secondly the C-terminal 

region being the most homologous among the four human a subunit paralogues, I 

therefore sought further to explore the roles of these two domains of human a4 

[here designated a4(N) and a4(C), respectively]. In addition to these two domains, 

the 2 "  ̂ loop is most homologous compared to the other loops among the four 

human a subunit paralogues. However, to date, no information concerning 

potential functional or regulatory contributions of this domain has been reported. I
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was therefore also interested in investigating this domain of human a4 [here 

designated a4(Loop2)].

In order to understand the biological functions of this subunit, I sought 

further to explore the roles of this protein through identification of its potential- 

binding partners. A powerful approach to this is to first express the coding 

sequence of a4 in order to produce the protein, which is then used to identify its 

binding partners. I have already mentioned before that the a4 is an integral 

transmembrane protein. Generally, expression levels of recombinant membrane 

proteins have been rather low and the purification procedure inefficient. Attempts 

to express recombinant a4 in bacterial system were not successful (data not 

shown), which might be due to the toxicity of the protein inserted into the bacterial 

membrane. Therefore, it was decided to express the coding sequences for a4(N) 

(residues 1-393), a4(Loop2) (residues 467-544, 78 amino acids) and a4(C) 

(residues 796-840, 45 amino acids) instead of the whole protein. The molecular 

weight of a4(N), a4(loop2) and a4(C) were predicted to be 45.30 kDa, 10.77 kDa 

and 5.264 kDa respectively, using the program Compute pl/Mw tool 

(http://us.expasv.orq/tools/pi tool.htmh. These recombinant domains were then 

used to identify their binding partners, and subsequently characterise their binding.

This chapter describes the construction, expression, purification and 

structural analysis of the a4(N), a4(loop2) and a4(C) domains. Two bacterial cell 

expression vectors, pGEX-4T1 and miniprseta-mac, and one Drosophila cell 

expression vector, pMT/BipA/5-His A, were used to produce the proteins. The 

pGEX-4T1 vector (Figure A .ia) used to express GST fusion protein is constructed 

to direct the synthesis of foreign polypeptides in E. coil as fusions with the 0  

terminus of a 26-kDa GST protein. This vector contains the strong IPTG-inducible 

tec promoter, which controls expression of inserts cloned into the vector. This
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vector is also engineered with an internal Lacl^ gene. The Lacl^ gene product is a 

repressor protein that binds to the operator region of the tac promoter, preventing 

expression until induction by IPTG. In this way, a control over the expression of 

the insert is maintained. The vector also contains a thrombin cleavage site just 

before the multiple cloning sites (MCS), so that the GST carrier can be cleaved 

from fusion proteins by thrombin. The miniprseta-mac vector (Figure A. 1b) 

contains the bacteriophage T7 promoter induced by T7 RNA polymerase, which 

was induced by addition of IPTG to bacterial cells. This vector produces a fusion 

protein with a His tag at the N-terminus. The pMT/BipA/5-His A vector (Figure A.2) 

contains the Drosophila metallothionein (MT) promoter which is tightly regulated 

and is easily induced by the addition of CUSO4 . This vector also carries the 

Drosophila BiP signal sequence for efficiently targeting BiP and its fusion protein 

into the secretary pathway of S2 cells. Frequently, secretion of recombinant 

proteins into the culture medium improves their yield and quality. This vector 

produces a fusion protein, with a His tag at the C-terminus, in culture medium.

3.2 Results

3.2.1 Expression and Purification of a4(N)

3.2.1.1 Using E. coli Bacterial Expression System

In order to express a4(N), an E. coil bacterial system was first chosen due 

to its simplicity and potentially high levels of protein expression.

Construction ofa4(N) into pGEX-4T1 Expression Vector

The cDNA sequence encoding the intact a4 protein was previously cloned 

in pGEM-T Easy vector by Dr Annabel Smith (Department of Medical Genetics, 

University of Cambridge). The cDNA sequence spanning the a4(N) region was 

amplified from this vector by high fidelity LR-PCR using primer 1 (forward) and
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primer 2 (reverse) (Table A.3). The resulting 1.193 kb EcoR\-Not\ PCR fragment 

was digested using the two restriction endonucleases, and subsequently ligated 

into pGEX“4T1, which had been cleaved with the same restriction enzymes. The 

ligation product was used to transform two E. coli strains, C41(DE3) [which was 

derived from BL21(DE3)] and AD494(DE3), by electroporation. Positive 

recombinant clones were identified by both colony PGR (using the same primers 

as in PCR), and restriction endonuclease digestion (using the same enzymes as in 

cloning). The insert sequence in the positive clone was verified by DMA 

sequencing, in both directions, using primers 17, 25, 26, 27 (forward) and 18, 28, 

29, 30 (reverse) (Table A.3). This is to ensure the absence of PCR-induced 

mutations and that the fusion to GST was in-frame. A recombinant plasmid 

containing the correct a4(N) sequence, termed pGEX-a4(N), was subsequently 

subjected to small-scale expression trials.

Expression and Purification

Prior to large-scale expression, small-scale expression trials - as listed 

below, were performed to screen the best-expressed colonies and to optimise 

expression conditions.

Firstly, three randomly chosen BL21 colonies, harbouring the pGEX-a4(N) 

plasmid, were screened for GST fused a4(N) protein [GST-a4(N)] expression at 

37°C with 2 hr induction. After cell lysis, samples of insoluble and soluble protein 

fractions were analysed by SDS-PAGE and Western blotting. The Western blot 

was probed with anti-GST antibody (Pharmacia), and then followed by HRP- 

conjugated secondary antibody. Both assays confirmed the production of GST- 

a4(N) in all samples collected and there were no visible differences in expression 

levels observed between the three colonies (data not shown).
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Secondly, small-scale cultures, in 10 ml volume, were grown at 37°C until the 

O D eoo reached 0 .8 . Cultures were allowed to equilibrate at 30°C for 30 min prior to 

induction with 0.1 mM IPTG. Samples taken at 2, 4 and 5 hr post induction were 

lysed, and the GST-a4(N) in the soluble sonicate was purified, under native 

conditions, using glutathione sepharose. All eluates were submitted to SDS-PAGE 

to assess levels of expression. Detection of GST-a4(N) (with expected size of 71.3 

kDa) purified from soluble fraction (lanes 4-6 of Figure 5) indicates that the fusion 

protein remained soluble and the highest level of the expression appeared with the 

4 hr-induction (lane 5). However, the overall yields were relatively low for all 

samples collected.

Thirdly, expression trials using a different E. coli strain, AD494(DE3), were 

attempted under 4 hr-induction at 30°C. As demonstrated by Figure 6 , the yield of 

soluble GST-a4(N) produced from using AD494 was even lower than that from 

BL21. There was obviously insufficient protein produced for further structural 

study.

Based on the above trials, large-scale expression was performed as 

follows: 6  litres of BL2 1  host was grown to O D eoo of 0 . 8  at 37°C, the incubation 

temperature was lowered to 30°C for 30 min, then IPTG was added (final 

concentration 0.1 mM), and incubation was continued for a further 4 hrs. After cell 

lysis, samples of soluble and insoluble fractions, flow-through before wash and 

eluate were analysed by SDS-PAGE and Western blotting (Figure 7). From Figure 

78, it can be seen that there was roughly equivalent amounts of insoluble and 

soluble
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M 1 2 3 4 5
75 kD“ ■

30 kD-

15 kD-

GST-a4(N)

GST

Figure 5 SDS-PAGE analysis.
SDS-PAGE (12%, stained with coomassie brilliant blue R250) analysis of the expression 
and purification of GST-a4(N). This figure demonstrates the effect of different lengths of 
induction time on yields of the GST fusion protein. The culture was induced with 0.1 mM 
IPTG at 30°C for various lengths of time. Soluble sonicates of each sample were purified 
and eluted. Lanes M: full-range rainbow Marker, 1: GST alone, 2: insoluble sonicate, 3: 
beads after elution, 4-6: eluates from samples with 2, 4 and 5 hr-induction.
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M 1  2 3 4  M 1 2 3 4

75 kD-

30 kD-

GST-a4(N)

Figure 6 SDS-PAGE analysis.
SDS-PAGE (12%, stained with coomassie brilliant blue R250) analysis of the expression 
trials of GST-a4(N). This figure demonstrates the effect that different bacterial strain on 
yields of the protein. The culture was induced with 0.1 mM IPTG for 4 hrs at 30°C and 
soluble sonicates of each sample were purified. Panels A and B show the expression with 
AD494 and BL21, respectively. Lanes M: full-range rainbow marker, 1: insoluble sonicate, 
2 and 3: the 1®* and 2"^ eluates, 4: beads after elution.
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GST-a4(N) produced {lanes 1 and 2). Production of insoluble protein indicates the 

existence of unfolded or misfolded forms of the protein. The yield of soluble GST- 

a4(N) was low, approximately 50 pg per litre of bacterial culture expressed, as 

measured by Bio-Rad Protein Assay.

CD SpectroscoDV Analysis o f GST-a4(N)

CD spectroscopy was used to probe the secondary structure of the purified 

GST-a4(N) (work undertaken by Dr Timothy Dafforn, Department of Haematology, 

University of Cambridge). The analysis was carried out with 100 pi of 0.22 mg/ml 

GST-a4(N) in 0.1 M phosphate buffer (pH 8.0). GST alone, which was produced in 

parallel, replaced GST-a4(N) as the control. Figure 8A shows the CD spectra of 

GST and GST-a4(N). The spectrum of GST shows a large negative band around 

208 nm and a small negative band around 222 nm, indicating considerable a- 

helical content as well as some p-sheet structure compared with the standard CD 

spectra (Figure 88) (Perczel et al., 1991; Perczel et al., 1992a, b). This result is 

consistent with the published structure of GST (Masino et al., 2002). However, the 

CD spectrum of GST-a4(N) exhibits a very weak negative band around 205 nm 

and the curve gradually flattens out and approaches zero mdeg of CD 

absorbance. This spectrum is analogous to the standard CD spectrum of irregular 

structure (Figure 80), suggesting that no clear secondary elements were detected 

in this sample. In other words, the GST-a4(N) might not have been folded properly 

in solution, although it was soluble.
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Figure 8 Far-UV CD analysis.
Panel A, spectra of GST-a4(N) and GST proteins. Data points were collected at protein 
concentration of 0.22 mg/ml, suspended in 0.1 M phosphate buffer pH 8.0, 22°C. Each 
spectrum is the averaged result of ten spectra. Standard curves of known secondary 
structure elements and irregular structure of proteins are shown in panels B and C, 
respectively [for references, see (Perczel et al., 1991; Perczel et al., 1992a, b)].
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3.2.1.2 Using Drosophila S2 Cell Line

Further attempts were made to express a4(N) by using Drosophila S2 Cells 

as follows.

Construction ofa4(N) into pMT/BIdA/S-HIs A Expression Vector

The cDNA sequence encoding a4(N) was amplified by high fidelity LR-PCR 

using primer 5 (forward) and primer 6 (reverse) (Table A.3). The resulting 1.191kb 

Spel-Agel PCR fragment was cloned into the Spel and Age\ sites of the 

pMT/BiPA/5-His A vector. The subsequent identification of positive clones and 

verification of inserts were carried out as described in Section 3.2.1.1. The 

recombinant plasmid containing correct a4(N) sequence, termed pMT-a4(N), was 

used to transfect S2 cells as follows.

Transfection and Selection of Stable Ceils

Purified pMT-a4(N) plasmid was co-transfected into the S2 cells together with 

pCoHygro vector which was used for selection, in a mass ratio of 19:1. The empty 

pMT/BiPA/5-His A vector replaced pMT-a4(N) as the control. After a few weeks of 

selection with hyg.B, stably transfected cells were obtained. To check whether the 

transfected plasmid DMA had integrated into the chromosomes of the host, 

genomic DMA was made from either the stable S2 cell line transfected with pMT- 

a4(N) or from the control. Using the genomic DMA as a template, a standard PCR 

was carried out using primers 5 and 6 (Table A.3) and the results were analysed 

on agarose gel (Figure 9). A band with the expected size of a4(N) (lanes 4 and 5) 

is seen from the sample of S2 cells transfected with pMT-a4(N), demonstrating 

that pMT-a4(N) plasmid not only transfected into the cells, but also integrated into 

the genomic DMA of these cells. This band is not present in the control (lanes 1 

and 2), indicating the specificity of the PCR.
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1 2 3 4 5 6

10 kb-

1.2 kb [a4(N)] - - Ik b

Figure 9 Agarose gel analysis.
Agarose gel (2%) analysis of PCR products from genomic DMA of pMT-N transfected 82 
cells and the control. Lanes 1 and 6: 1 kb and 100 bp ladders, respectively, 4 and 5: 2 pi 
and 8 pi of PCR products from pMT-N transfected 82 cells, 2 and 3: 2 pi and 8 pi of PCR 
products from the control.
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Expression and Purification

4x 15 ml of the stably transfected S2 cells were induced with CUSO4 and 

both culture media and cell pellets were collected every 24 hrs immediately after 

induction up to the 5*̂  day. No protein bands with the expected size (~ 46 kDa) of 

His-a4(N) were seen on SDS-PAGE for all the collected samples (data not 

shown). The media collected were then mixed, purified (with Ni-NTA agarose resin 

under native conditions) and concentrated (with Vivaspin 20 column). All samples, 

including the cell extracts and eluates, were analysed by SDS-PAGE and Western 

blotting. No visible bands of this protein could be seen on SDS-PAGE (data not 

shown). When Western blotting was carried out using anti-histidine (anti-His) 

antibody (Figure 10), a 46 kDa band was seen in the concentrated sample purified 

from the mixed media {lanes 1). However, a band with a similar size also 

appeared in the control {lane 2), suggesting that this band is not specific. Similarly, 

no a4(N) was detected in the cell extract containing transfected pMT-a4(N) {lanes 

3) compared to the control {lane 4).
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50 kD- 
35 kD"

2 3 4

Figure 10 Western blot analysis.
Western blot analysis using anti-His antibody (1 in 1000 dilution) for expression of His- 
tagged a4(N) in Drosophila S2 cells. Lanes 1\ mixture of media collected from samples 
taken at 1-5 days post induction from pMT-a4(N) transfected S2 cells, 2: mixture of media 
collected from the control after induction, 3 and 4\ cell extracts from the pMT-a4(N) 
transfected and control cells.
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3.2.2 Expression and Purification of a4(Loop2)

Construction of a4(LooD2) into miniprseta-mac Expression Vector

The cDNA sequence encoding a4(Loop2) was amplified by high fidelity 

PCR using primer 7 (forward) and primer 8 (reverse) (Table A.3). The resulting 

234 bp BamHI-EcoRI PCR fragment was cloned into the BamHI and EcoRI sites 

of miniprseta-mac vector. The subsequent transformation (into BL21), 

identification of positive clones and verification of inserts were carried out as 

described in Section 3.2.1.1. The recombinant plasmid containing the correct 

a4(Loop) sequence, termed prseta-a4(Loop2), was subjected to expression trials. 

Expression and Purification

Small-scale expression trials to screen for the best-expressed colonies and 

to optimise expression conditions were performed prior to large-scale expression. 

For the screening, six randomly chosen colonies, each harbouring a prseta- 

a4(Loop2) recombinant, were cultured and expressed at 37°C for 2 hrs. After cell 

lysis, both insoluble and soluble sonicates from each individual sample were 

analysed on SDS-PAGE (Figure 11). As demonstrated by the SDS-PAGE, a high 

yield of His-tagged a4(Loop2) fusion protein [(His-a4(Loop2)] was produced from 

all the colonies, although one of them expressed at a slightly lower level {lane 12). 

However, almost all of the produced protein remained in the insoluble fraction 

{lanes with even numbers) and this type of insoluble product is normally termed an 

inclusion body. Several other attempts were made to obtain at least a significant 

portion in the soluble fraction by changing expression vectors as well as using a 

variety of induction conditions. These included using pGEX-4T1 instead of 

miniprseta-mac, variations in IPTG concentrations (0.05, 0.1, or 0.2 mM) and 

induction times (0.5, 1, or 2 hrs) as well as different expression temperatures (25,
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Figure 11 SDS-PAGE analysis.
Analysis of colony screen for expression of His-a4(Loop2). The culture inoculated from 
each colony (6 colonies in total) was induced with 0.1 mM IPTG for 2 hrs at 37°C. Soluble 
and insoluble sonicates of each sample were analysed on SDS-PAGE (16%) stained with 
coomassie brilliant blue R250. Lane M is low-range Marker, all lanes with odd numbers 
are soluble sonicates, and those with even numbers are insoluble sonicates.
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30 or 37°C). However, none of these conditions tested could increase the solubility 

of the protein (data not shown). It was therefore decided to prepare His-a4(Loop2) 

from the inclusion bodies by a refolding strategy.

Insoluble His-a4(Loop2) was produced in a 500 ml volume culture induced 

with 0.2 mM IPTG at 37°C for 2 hrs. After cell lysis, the insoluble sonicate 

containing His-a4(Loop2) was solubilised in 6 M urea and after centrifugation, the 

supernatant was purified using Ni-NTA column under denaturing conditions. 

Samples were collected at several stages during purification and analysed by 

SDS-PAGE (Figure 12A) and Western blotting (Figure 128). The highly expressed 

and purified His-a4(Loop2) was demonstrated by SDS-PAGE (/anes 2 and 3/4, 

before and after purification). An extra band approximately double the size of His- 

a4(Loop2) was detected {panel 8), suggesting the existence of a dimer. The yield 

of the purified denatured His-a4(Loop2) was approximately 50 mg per litre of 

bacterial culture.

To refold the purified protein, the sample was first diluted to a concentration 

of less than 50 ^g/ml and dialysed using 3,500 MWCO dialysis tubing against 

various buffers: 1) PBS (pH 7.4); 2) 20 mM Tris (pH 8.0); and 3) PBS containing 

300 mM NaCI, 10% glycerol, 0.005% Tween 20, 0.1% p-mercaptoethanol, 5 M 

urea (pH 7.4). The concentration of glycerol and urea in buffer 3 was then 

gradually reduced, e.g. 1% and 0.5 M lower in the successive dialysis buffers 

changed every 12 hrs. However, precipitation occurred immediately when the 

protein was dialysed against both the 1®̂ and 2"^ buffers. Although no precipitate 

was seen until the urea concentration in buffer 3 had fallen to 2 M, precipitation 

occurred very rapidly when the urea concentration was further reduced to 1 M. As 

a urea-containing buffer was not suitable for use in this experiment, guanidine-HCI 

was used instead as the solubilisation reagent followed by dialysis against non
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Figure 12 SDS-PAGE and Western blot analysis.
SDS-PAGE (16%, panel A, stained with coomassie brilliant blue R250) and Western blot 
analysis (panel B) of the expression and purification of His-a4(Loop2). The culture was 
induced with 0.2 mM IPTG for 2 hrs at 37°C. The insoluble fraction was solubilised with 6 
M urea followed by purification under denaturing conditions. Lanes M: low-range rainbow 
marker, 1: cleared lysate, 2: insoluble lysate, 3 and 4: the and 2"  ̂eluates. Western 
blots were probed using anti-His antibody (1 in 1000 dilution).
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detergent sulfobetaines (NDSB) containing buffer as described by Vuillard e t al 

(Goldberg et al., 1996; Vuillard et al., 1995). However, protein precipitation also 

appeared heavily during the following dialysis.

Progress in making soluble His-a4(Loop2) was achieved through further 

attempts in which a Protein Refolding Kit was employed as described in Section 

2.15. His-tagged a4(Loop2) inclusion bodies were produced in 500 ml volume 

culture (Figure ISA) and highly purified from insoluble materials (Section 2.15.2) 

as shown in Figure 138 {lane 3). To investigate refolding of the inclusion bodies, 

they were first solubilised in a buffer containing N-lauroylsarcosine, and then 

dialysed against 20 mM Tris-CI (pH 7.4) and 0.1 mM DTT in order to remove the 

detergent. No visible precipitation occurred during dialysis and a high yield, about 

20 mg per litre of culture, of soluble His-a4(Loop2) was obtained. Figure 13C 

demonstrates the final confirmation of refolded a4(Loop2) by Western blotting. 

This sample was subjected to structural analysis as follows.

CD Spectroscopy Analysis

CD spectroscopy was used to determine whether the soluble His-a4(Loop2) 

protein had secondary structure (work undertaken by Dr Timothy Dafforn, 

Department of Haematology, University of Cambridge). The analysis was carried 

out with 100 |il of the 0.8 mg/ml His-a4(Loop2) and the spectrum is shown in 

Figure 14. The CD spectrum of His-a4(loop2) exhibits a strong negative 

absorbance at about 215 nm, which is analogous to the standard CD spectrum of 

antiparallel p-sheets (Figure 88). It indicates that this protein is folded with a 

significant portion of p-sheets in solution. Therefore, the refolded His-a4(loop2) 

was used in further studies.
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Figure 14 CD spectroscopy.
Far-UV CD spectrum of the refolded His-tagged a4(loop2) protein. Data points were 
collected at protein concentration of 0.8 mg/ml, suspended in 20 mM Tris-CI, 0.1 mM 
EDTA buffer (pH 7.4), 22°C. This spectrum is the averaged result often spectra.
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3.2.3 Expression and Purification of a4(C)

Construction of a4(C) into pGEX-4T1 Expression Vector

cDNA encoding the last 45 amino acids of a4 [a4(C)] was amplified by high 

fidelity PCR using primer 11 (forward) and primer 12 (reverse) (Table A.3). The 

resulting 141 bp BamHI-EcoRI PCR fragment was cloned into the BamH\ and 

EcoRI sites of the pGEX-4T1 vector. The subsequent transformation (into BL21), 

identification of positive clones and verification of inserts were carried out as 

described in Section 3.2.1.1. The recombinant containing correct a4(C) sequence, 

termed pGEX-a4(C), was subjected to expression trials.

Expression, Purification, and Detection

Prior to large-scale expression, the small-scale expression trials listed 

below were performed to screen for the best-expressed colonies and to optimise 

expression conditions.

Firstly, three randomly chosen BL21 colonies, each harbouring the pGEX- 

a4(C) plasmid, were screened for the GST fused a4(C) protein [GST-a4(C)] as 

described for GST-a4(N). A Western blot was probed with the polyclonal antibody 

RA2922, directed against the last 14 amino acids. This confirmed the production of 

GST-a4(C) in all samples collected and there were no visible differences in 

expression levels between the three colonies (data not shown).

Secondly, the effect of different induction times (2, 3, 5 hrs) on the yield of 

GST fusion protein was investigated as described for GST-a4(N). The empty 

vector, i.e. without a4(C) insert, provided a control. The same amount of each 

eluate was analysed on both SDS-PAGE and Western blotting using RA2922 

antibody. The Western blotting (Figure 15A) demonstrated the production of a 

protein with a molecular weight of approximately 31 kDa, corresponding to the 

recombinant GST-a4(C) with a predicted molecular weight of 31.54 kDa. Also the
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highest level of expression was from the 3 hr-induction {lane 3). The detection of 

GST-a4(C) purified from the supernatant of cell lysate indicated that the protein 

remained soluble. However, bands with the similar size (31 kDa) could not be 

observed on SDS-PAGE (Figure 158), indicating that the overall expression level 

of the fusion protein was very low. In addition, there were bands {lanes 1-3 Figure 

158) of the same size (-26 kDa) as the control GST {lane 4) which were not 

recognised by RA2922 antibody (Figure 15A), suggesting they were GST alone. 

This result indicates that the purified protein contained mainly GST and only small 

portion (approximately less than 5% estimated from SDS-PAGE analysis, data not 

shown) of GST-a4(C) fusion protein.

Finally, other attempts were made to increase the expression level of a4(C) 

by cloning its coding sequence into miniprseta-mac vector followed by expression 

in BL21. However, no obvious improvements were obtained (data not shown).

As the GST-a4(C) fusion protein was expressed in this system only at very 

low levels, a large-scale fermentation technique was employed to obtain sufficient 

a4(C) protein (work was carried out by Ms. Galina Dimitrova, The MRC Dunn 

Human Nutrition Unit, Cambridge). Based on the above trials, fermentation was 

carried out in a 30 litre volume, with induction with 0.1 mM IPTG for 3 hrs at 30°C 

using BL21.

Similarly, the two missense mutations previously identified in this a4(C) 

region from two different patients diagnosed with rdRTA (R807Q or G820R) (Table 

2) (Smith et al., 2000; Stover et al., 2002), were also expressed in order to 

compare with a4(C) in further studies carried out later (detailed in Chapter 5). In 

order to do this, site-directed mutagenesis using pGEX-a4(C) as a template
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was carried out, as described in Section 2.9, to create a single base substitution in 

codon 807 (CGA CAA) or in codon 820 (GGG AGG) which then resulted in 

the single amino acid change R ^  Q or G ^  R, respectively. The obtained 

constructs were verified by DNA sequencing (Figure 16) and used to transform 

BL21 cells followed by fermentation under the same conditions as those used for 

pGEX-a4(C). The proteins produced are designated as pGEX-a4(C)-G (for 

mutation G820R) and pGEX-a4(C)-Q (for mutation R807Q).

During fermentation, bacterial cell growth was monitored (Figure 17). As 

demonstrated from Figure 17, before the addition of IPTG {arrowed), a normal 

exponential bacterial cell growth was observed for all three proteins. However, a 

while after the addition of IPTG, the increase of cell growth was slowing down for 

all samples. This change in cell growth is very likely due to production of the 

proteins. Interestingly, both mutant samples, especially pGEX-a4(C)-G, showed 

more effects on cell growth than that of wild type.

Following cell lysis, fusion proteins were purified from the soluble fraction 

using a GSTrap column, under native conditions. Eluates were concentrated and 

then thrombin-digested to remove GST before being submitted to HPLC 

purification. Samples of fusion protein eluates (concentrated), thrombin digests 

and the a4(C) [or a4(C)-G or a4(C)-Q] proteins from HPLC purification were 

analysed by SDS-PAGE (Figure 18A) and Western blot analysis (Figure 188). The 

analysis of GST-a4(C), demonstrated the presence of the fusion protein (Figure 

18A, lanes 4, 5, 6 and 1, 2, 3, and Figure 188, lanes 1 and 2, before and after 

thrombin digestion) in both intact and degraded forms. A band corresponding to 

a4(C) is evident in the post-thrombin-digested sample, as shown by
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WT

A L R L H
G C C C T G C G f l  C T G  C R C

LQL HA

G C C C T G C R  R C T G C R C

Mutant

WT

T R I G  T C G G G G  R T G G   T

V R DY G
T R I G  T C R G  G G R T G G T

Mutant

Figure 16 Site-directed mutagenesis.
Mutations created in a4(C) using site-directed mutagenesis method. Panel a shows a 
single base substitution in codon CGA CAA results in changing of arginine to glutamine 
[a4(C)-Q]. Panel b shows a single base substitution in codon GGG AGG results in 
changing of glycine to arginine [a4(C)-G].
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Exponential growth curves for fermenter runs

0.9
'p 0.8
0  0.7
CD
S  0.6

1  0.5I"
O  0.3

0.2

  G ST-34(C^ Qmut
  G ST-a4(C^ Grrut
  GST-a4(C>Wr
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Figure 17 Comparison of exponential growth.
Comparison of exponential growth curves during fermentation for expression of GST- 
a4(C), GST-a4(C)-G and GST-a4(C)-Q. The cultures were induced at ODeoo ~0.8, with 0.1 
mM IPTG for 3 hrs at 3Q°C. Arrows, the points of addition of IPTG.
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Figure 188 (lane 2). This thrombin-digested product was subjected to HPLC 

purification. Results from HPLC (Figure 19) demonstrated that of the three main 

peaks observed, the second peak (arrowed) corresponded to recombinant a4(C). 

The first peak represented a fraction of smaller mass than expected, but N- 

terminal sequencing confirmed that this was indeed part of a4(C). This short form 

indicates the presence of an alternative thrombin cleavage site within a4(C). The 

third peak corresponded to non-digested GST-a4(C) fusion protein. As can be 

seen in Figure 20, further passage of the second fraction through an HPLC column 

linked to a mass spectrophotometer confirmed a single peak representing the 

a4(C) fragment, with the expected mass of 5.41 kDa. This corresponded well to 

the predicted size of 5.264 kDa, the difference being accounted for by two 

additional amino acids, glycine and serine, which were introduced by the BamH\ 

restriction site. As expected, this fragment was recognised by RA2922 (Figure 

188, lane 3), further confirming its identity. The two mutant proteins showed 

similar purification and thrombin digestion profiles (data not shown). Moreover, the 

HPLC-purifled a4(C) and the two mutants were all subjected to N-terminal 

sequencing which confirmed their identity. The final yield of HPLC-pu rifled proteins 

varied between 0.2-0.4 mg from a 30-litre volume culture and these purified 

proteins were used in further studies described in the following chapters.
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Figure 19 HPLC purification.
Following thrombin digestion, the mixture containing a4(C) was subjected to HPLC 
purification. The arrowed peak represents the fraction containing intact a4(C) protein. 
Data for a4(C)-G and a4(C)-Q mutant proteins are of similar quality, but not shown.
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Figure 20 Mass spectroscopy.
Following thrombin digestion, the mixture containing a4(C) was subjected to HPLC 
purification. The fraction containing intact a4(G) protein was further analysed by LC-MS. 
Its molecular mass, 5.41 kDa, confirms it as a4(C). Data for a4(C)-G and a4(G)-Q mutant 
proteins are of similar quality, but not shown.
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CD Spectroscopy Analysis

As such low yields of the a4(C), a4(C)-G and a4(C)-Q proteins were 

obtained, it was decided later to synthesise them for certain further studies 

described in Chapter 5. The polypeptides were synthesised by CovalAB and 

analysed by CD spectroscopy to probe the secondary elements of the proteins. All 

products were N-acetylated, HPLC-purified, and were all completely water-soluble. 

Protein concentrations were determined using UV absorption measurement, with 

calculated extinction coefficients at 280 nm for all three proteins. The analysis was 

carried out with 200 pi of 100 pM of each protein in H2 O plus 5% (v/v) PBS (pH 

7.4) and results are shown in Figure 21. The CD spectra of all three proteins 

exhibit two large negative bands around 208 nm and 222 nm. These spectra are 

analogous to the standard CD spectrum of a-helix (Figure 8B), suggesting these 

proteins mainly have a-helix structure in solution. It was noticed that both mutants 

showed much stronger CD signals than that of wild type. This indicates a higher 

level of a-helix in the mutants compared to the wild type. In addition, the CD signal 

around 208 nm is relatively stronger than that of 222 nm in the spectrum of a4(C)- 

G compared to the other two proteins, suggesting a higher content of coils in this 

protein.

115



CD Spectra

240 260200 22
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Wavelength (nm)

a4(C)-G
a4(C)-Q

Figure 21 CD spectroscopy.
Far-UV CD spectra of a4(C), a4(G)-G and a4(C)-Q. Data points were collected at protein 
concentration of 100 pM, suspended in H2O containing 5% (v/v) PBS (pH 7.4), 20°C. Each 
spectrum is the averaged result often spectra.
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3.3 Discussion

Modem molecular biological techniques make it possible to produce 

individual domains of multidomain proteins as independent molecules, allowing the 

investigator to study the structures and functions of individual folded domains. Due 

to the advantage of simplicity and a relatively high level of expression, a bacterial 

E. coli cell expression system was chosen as the first choice, for the expression of 

a4(N), a4(Loop2) and a4(C) domains of the human a4 protein. The E. coli BL21 

strain was initially chosen because it is defective in OmpT and Lon protease 

production, meaning it is able to aid in the expression of fusion proteins by 

minimising the effects of proteolytic degradation by the host (Miroux and Walker,

1996). All three proteins were produced in the above system, but each of the initial 

products differed in yield, solubility and folding aspects.

Although the production of recombinant fusion protein in E. coli is well 

established, there are numerous factors which may present obstacles for 

successful expression and purification of foreign proteins (Smith and Johnson, 

1988). In other words, successful expression of foreign proteins in E. co//depends 

upon many events, which collectively result in obtaining high yields of a soluble 

protein whose functions have been maintained throughout the expression and 

purification processes. As individual proteins vary widely in their toxicity, solubility, 

and susceptibility to degradation in the E. coli environment, the conditions required 

to obtain optimal yields of a soluble and active protein need to be empirically 

determined for each construct. A variety of growth and expression parameters also 

need to be investigated.

Host strains may in some cases help to increase the yield of intact soluble 

fusion proteins. As seen in the expression of GST-a4(N), expression level of 

soluble GST-a4(N) was higher in BL21 than that of AD494. In 1998, Saluta and
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Bell had observed the highest yield of GST-luciferase fusion protein in BL21 

compared to other strains tested (Saluta, 1998). The higher level of expression in 

BL21 cells might be due to its ability to minimise the effects of proteolytic 

degradation, which in turn increases protein stability. In addition, the yields of both 

soluble GST-a4(N) and GST-a4(C) varied with different periods of induction 

period. However, overall yields of these two proteins, including their soluble and 

insoluble forms, were both very low.

The possible reasons for extremely low yields of a4(C) could be because: 

firstly, it was seen that the cell growth slowed down after addition of IPTG during 

fermentation. This change is presumably caused by production of the protein, 

suggesting a4(C) might be toxic to the cells. Another interesting aspect was that 

the GST alone always appeared in a much larger fraction along with the 

production of GST-a4(C). Whether or not this phenomenon also implies that a4(C) 

might be toxic to the cells remains unclear. However, if we assume a4(C) is toxic, 

then in order to protect themselves, the cells may digest the a4(C) part from its 

initial product of GST fusion protein. This effect reduces the levels of GST fusion 

protein. Secondly, relatively large amounts of GST alone in cell lysates influenced 

purification efficiency of GST-a4(C) after cell lysis. This would also reduce the 

level of purified fusion protein. Thirdly, it is difficult for thrombin digestion to reach 

completion. In addition, the existence of an internal digestion site of thrombin 

made it more difficult to control the amount of enzyme used. The amount of 

thrombin added resulted in either incomplete digestion or over digestion with the 

creation of short forms of a4(C), and both decrease the final yield of a4(C).

However, a high-level production of foreign fusion proteins in E. coli does not 

always indicate a successful outcome, because it often results in the formation of 

inclusion bodies, as demonstrated by expression of His-a4(Loop2). Although the
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formation of inclusion bodies can be used as a means to purify an expressed 

fusion protein, which may othenvise be unstable in the soluble fraction, the 

conditions needed to refold the inclusion bodies afterwards can be highly variable.

Apart from the yield and solubility aspects, another important aspect is 

protein folding. When proteins are being synthesised, they must adopt the correct 

conformation for their functions. Proteins may either fold spontaneously or they 

may need the assistance of folding factors, such as chaperons, to gain the correct 

final conformations.

When folded, proteins are normally soluble in aqueous solutions. However, 

this is not always the case and vice versa. As seen in the case of GST-a4(N), 

although large-scale expression in BL21 obtained reasonable amounts of the 

soluble protein for structural analysis, the CD spectrum obtained suggested no 

clear natural secondary structure elements in the sample. In other words, this 

protein might be unfolded or misfolded. CD is an excellent method for analysing 

the conformation of proteins and peptides in solution. Each of the three basic 

secondary structures of a polypeptide chain (helix, sheet, and turn) shows a 

characteristic CD spectrum and the standard curves of CD spectra were first 

published in 1969 by Greenfield and Fasman (Greenfield and Fasman, 1969). 

Although those are actually for poly-lysine in different conformations, only little 

improvement in the accuracy of fits has been achieved by attempting to generate 

other standard data sets from protein spectra of known structure (Johnson, 1990). 

The standard spectra (Figure 88) are theoretical curves of the six pure 

components derived by the convex constraint analysis method (Perczel et al., 

1991; Perczel et al., 1992a, b). The analysis of CD spectra can yield valuable 

information about the secondary structure of biological macromolecules. GST is a 

well-characterised protein of known structure and its CD spectrum is typical of an
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a/p protein, with predominance of the a signal (Masino et al., 2002). My results 

regarding the structure of GST are consistent with the known ones. Due to 

possible unfolding or misfolding of GST-a4(N), the solubility of this protein might 

benefit from a GST tag. However, whether or not the produced a4(N) itself would 

still remain soluble after removal of the GST tag is unknown.

Attempts were also made to express the protein using another E. coli strain: 

AD494. This strain contains thioredoxin reductase (trxB) mutants which enable 

disulphide bond formation in the cytoplasm, providing the potential to produce 

properly folded, active proteins. This advantage is lacking in many other commonly 

used E. coii strains, including BL21, where the reducing environment of the 

cytoplasm prevents the generation of protein disulphide bonds (Derman et al., 

1993). Although, to date, no 3D structural information is available for the a subunit 

of the proton pump in any species, having nine cysteine residues in the a4(N) 

region predicts a high likelihood of intrachain disulphide bridges. In many proteins, 

disulphide bonds (intra- or interchain or both) contribute to stabilising their native 

structures. If this is also the case for a4(N) its unfolding or misfolding, after 

production in BL21 cells, might partly be the consequence of lacking properly 

formed disulphide bonds. Therefore, using AD494 instead of BL21 might have 

helped reduce misfolded GST-a4(N) by formation of proper disulphide links. This 

in turn would increase the level of soluble GST-a4(N) by reducing the levels of 

insoluble ones. However this is not the case as it was found that the amount of 

soluble and insoluble proteins produced still remained similar. In addition, the yield 

of the soluble GST-a4(N) was even lower in AD494 than in BL21. It might be too 

perfunctory to say that this result suggests no intradomain disulphide bonds within 

a4(N). However, seeing the results above perhaps implies other post-translational 

modifications are necessary for the proper folding of this protein. It was
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disappointing to not obtain a soluble protein with structural elements and it 

reinforces the importance of checking the folding situation of an overexpressed 

protein before using it in further studies.

In addition to the folding problem of a4(N), a4(Loop2) also generated 

difficulties. In contrast to a4(N), a4(loop2) was produced at a significant level, but 

mainly entered an insoluble inclusion body fraction after cell lysis. Despite using a 

variety of procedures (different expression vectors, growth temperatures, induction 

conditions) that have previously been shown to enhance the amount of soluble 

protein that would otherwise be inclusion bodies, a4(Loop2) still remained 

insoluble after initial expression. I therefore resorted to solubilisation of the protein 

from inclusion bodies. Inclusion bodies are insoluble aggregates of misfolded 

protein. Although they can be easily purified, solubilisation can usually only be 

obtained by using strong denaturing conditions, which normally causes a major 

problem later in achieving efficient folding in vitro. The renaturation process may 

not always be achieved, as demonstrated by solubilisation of His-a4(Loop2) 

inclusion bodies with urea followed by dialysis against different buffers. In the mid 

90s, Vuillard et al reported successful refolding of protein from inclusion bodies by 

using a non-detergent reagent, NDSB (Goldberg et al., 1996; Vuillard et al., 1995). 

Following this technique, some other proteins are also reported to have been 

successfully refolded (Benetti et al., 1998; Maiorano et al., 2000; Ochem et al.,

1997). However, application of this method to His-a4(Loop2) inclusion bodies also 

failed. Nevertheless, attempts to refold a4(Loop2) from inclusion bodies was finally 

successful using a Protein Refolding Kit (Novagen), where a mild detergent, N- 

lauroylsarcosine, that aids solubilisation of membrane proteins was used during 

the solubilisation stage.
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Although the folding situations of the expressed GST-a4(N) and His- 

a4(Loop2) were investigated, I did not check the relative aspect of the expressed 

a4(C). This is mainly due to, a) insufficient final protein product [a4(C)] obtained 

from an initial fermentation run, and b) a4(C) is completely water-soluble. For a 

polypeptide that is small, not tagged, and water soluble, it is more likely to be 

folded. This was confirmed by CD analysis using synthetic a4(C). All three types of 

a4(C) measured by CD spectroscopy were folded and mainly existed as a-helices 

in solution. However, the substitution of R to Q (in mutant a4(C)-Q) or G to R (in 

mutant a4(C)-G) increased the a-helix content. This is consistent with published 

data showing the Conformational Preferences of Amino Acids (Williams et al., 

1987; Wilmot and Thornton, 1988).

Attempts to express a4(N) using a different system. Drosophila S2 cells, also 

failed to produce detectable a4(N). The possible reasons could be: firstly, low 

levels of expression, which could be caused by low transfection efficiency. 

Secondly, it may be due to this protein being produced in an unfolded or misfolded 

form, which would subsequently be degraded by the ER quality control in 82 cells. 

Thirdly, failure to produce a4(N) on both bacterial and Drosophila cell systems 

might imply that certain specific mechanisms necessary for proper folding of this 

protein are scarce in the two systems used. Fourthly, as a4(N) is only a part of a4 

protein, its folding might also rely on some other parts of a4, such as the existence 

of interdomain disulphide links. However, no conclusion can be made for this 

unfolding or misfolding property until further structural information becomes 

available.

In conclusion, a4(C) and a4(Loop2), but not a4(N), were successfully 

produced and purified using bacterial expression systems, although the yield of 

a4(C) was very low. As a result, both purified a4(C) and a4(Loop2) were used to
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screen phage display random peptide libraries for potential binding partner(s). 

Attempts were made to produce a4(N) in both bacterial and insectile expression 

systems. However, no clear structure was detected from the GST-tagged a4(N) 

produced in bacterial system (although it is soluble) and also no a4(N) was 

detected from the insectile expression system. The inability to obtain folded a4(N) 

prevented further investigation at the in vitro level with the purified protein, such as 

usage of the phage display method to identify ligand(s). However, I was able to 

use a yeast two-hybrid system to search for potential binding partner(s) of a4(N), 

as this method does not rely on the purified protein. Investigations using phage 

display and yeast two-hybrid systems are described in the following chapter.
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CHAPTER 4 

SCREENING FOR BINDING PARTNERS

4.1 Introduction

Despite the importance of the a subunit, very little is known about the 

protein-protein interactions involving this subunit. In order to understand the 

biological functions of this subunit, I sought further to explore the roles of the 

protein through identification of its potential-binding partners.

Protein-protein interactions are critical to all cellular processes, and 

understanding them is crucial to understanding any biological system. Therefore, 

the identification of protein-protein interactions can help to determine the biological 

functions of proteins, by situating them relative to other proteins in cellular 

pathways or functional classes (Walhout and Vidal, 2001). Two groups of 

strategies, physical and library-based, are normally employed for the identification 

of protein-protein interactions. The physical strategy is a group of methods for the 

in vitro identification of interactions and it involves the use of proteins with no 

linkage to their encoding DNA. These methods include affinity binding, co- 

immunoprecipitation and chemical crosslinking. This strategy is generally applied 

in the validation of protein interactions determined by library-based strategy. The 

library-based strategy includes in vitro and in vivo methods, and both depend on 

the ability to link polypeptides to their encoding DNA. The in vitro methods use 

libraries in which polypeptides are on the outside of the cell where they are 

accessible for binding to exogenous ligands. The most widely used in vitro method 

is phage display (Sidhu et al., 2000). The in vivo methods can be defined as those 

in which the protein-protein interaction under study is detected inside of living
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cells. The most widely used in vivo method is the yeast two-hybrid (Y2H) system 

(Fashena et al., 2000).

In recent years, the phage display approach has become an increasingly 

popular in vitro selection technique in protein research (Sidhu et al., 2000). This 

method was first demonstrated with the E. co//-specific M13 bacteriophage (Smith, 

1985). Based on the idea, several other E. coli phage have been adapted for 

phage display and eukaryotic systems have also been developed (Possee, 1997; 

Ren and Black, 1998; Santini et al., 1998). In the case of phage display, a foreign 

peptide (or protein) fused to a bacteriophage coat protein is displayed on the 

surfaces of phage particles that also contain the cognate DNA packed inside of the 

phage. These particles can be selected for according to the affinity of the 

displayed peptide (or protein) to certain ligands (target proteins), and then the 

gene encoding the peptide (or protein) can be identified by sequencing. The 

greatest advantage of this method is that large numbers of clones (greater than 

10® different displayed sequences) can be easily screened. Furthermore, the direct 

linkage between an observed phenotype and encapsulated genotype allows fast 

determination of selected sequences. This powerful tool has been successfully 

used in a number of applications, including epitope mapping, determining enzyme 

specificity, and exploring protein-protein (or protein-DNA) interactions (Baltrusch et 

al., 2001; Hong and Boulanger, 1995; Scott and Smith, 1990). In this study, M13 

phage display libraries (NEB) containing up to 10^  ̂ members were screened by a 

simple in vitro selection procedure called "biopanning” (Figure 22). 10""®'̂  ̂ phage 

particles were used for each panning, and after extensive washing with a mild 

detergent, bound phage were eluted for propagation in E. coli. A single round of 

selection can enrich for binding phage by 20-1000 fold (Marks et al., 1991). The 

multiple rounds of selection provides a powerful strategy of enriching for specific
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binding phage. The specificity of the binding between the selected phage and 

target protein can be verified by ELISA using anti-M13 phage antibody.

luuuuuuwol

‘Phage display 
library

Target protein

Unbound ‘phage 
are washed away

u u w u d w w w

Bound ‘phage 
are eluted, 
amplified and 
the process 
repeated 2 times

After 3 rounds, 
individual clones 
are isolated and 
sequenced

Figure 22 Outline of phage display procedures.
The library containing phage-displayed peptides is Incubated in a plate coated with target 
protein. Unbound phage particles are washed away and the specifically bound phage is 
eluted, amplified and submitted for the next run. Details are from NEB.

In addition to phage display, another powerful approach for identification of

protein interacting ligands is an in vivo selection using the Y2H system.

Conventional Y2H systems relying on transcriptional activation of reporter genes in

the nucleus to detect protein-protein interactions were first established by Field et
126



al in the late 1980s (Fields and Song, 1989). Since then, several different Y2H 

systems have been developed (Drees, 1999; Fashena et al., 2000; Vidal and 

Legrain, 1999). One of these systems is the recently developed protein 

recruitment strategy (such as Sos recruitment) (Aronheim, 2000; Huang et al., 

2001). The Sos recruitment system is commercialised as CytoTrap™ (Stratagene) 

and was used in this study. This system greatly increases the opportunities for 

finding unique protein-protein interactions by taking the search for these 

interactions to the cytoplasm, rather than to the nucleus. In this system, proteins 

are expressed in the cytoplasm where, unlike in the nucleus, they may undergo 

post-translational modifications. Figure 23 illustrates the principle of the CytoTrap 

two-hybrid system.

W l j l W

']

GDP

OTP

Figure 23 Principle of the CytoTrap two-hybrid system.
Target protein is anchored on the yeast cell membrane through Myr protein. hSos protein 
is localised onto the membrane via bait-target interaction, where it activates the Ras 
pathway which permits mutant yeast cdc25H strain to grow at 37°C. Details are from 
Stratagene.

In the CytoTrap two-hybrid system, two plasmids (Table A.4) are 

constructed, one (pSos) encoding protein of interest (bait) fused to the human Sos 

[hSos, a Ras guanyl nucleotide exchange factor (Ras GEF)], and the other one 

(pMyr) encoding protein (target) fused to a v-Src myristylation membrane-
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localisation signal (Myr). The plasmids are co-transformed into a temperature- 

sensitive yeast mutant strain, cdc25H, which contains a mutation in the Cdc25 

gene, which encodes yeast Ras GEF (Petitjean et al., 1990). Because of the 

mutation, the cells can only grow at 25°C but not at 37°C. The Myr-target fusion is 

targeted to the yeast plasma membrane. Interaction between the bait and the 

target protein recruits hSos to the yeast plasma membrane where it complements 

the cdc25 mutation by activating the Ras signalling cascade. The interaction is 

detected through growth of the yeast cells at the restricted temperature (37°C). 

The pSos vector contains ADH1 promoter driving the expression of the hSos-bait 

which is constitutively active. The pMyr vector contains a GAL1 promoter driving 

the expression of the Myr-target fusion which is only induced by galactose. In 

addition, the pSos and pMyr vectors also carry, respectively, yeast biosynthetic 

genes LEL/2 and URA3 for selection of yeast transformants based on nutritional 

requirements.

This chapter describes identification of potential binding partners of a4(N), 

a4(Loop2) and a4(C) using phage display and CytoTrap two-hybrid systems. In 

the case of phage display analysis, two random peptide (7-mer and 12-mer) M13 

phage libraries were screened using either a4(Loop2) or a4(C) as a target protein. 

Both target proteins were produced as described in the previous chapter. In the 

case of Y2H analysis, either a4(Loop2) or a4(N) was used as a bait protein to 

screen a human testis cDNA library using the CytoTrap two-hybrid system.

4.2 Results 

4.2.1 Phage Display Assays

4.2.1.1 Screening Phage Display Library with a4(C)

Identification o f Potential Binding Phaae-Displaved Peptide

128



A 7-mer random peptide M13 phage display library was used to screen 

immobilised a4(C) (as described in Section 2.19.1.2) for potential interaction 

peptides displayed on the phage. For this purpose, HPLC purified recombinant 

a4(C) protein was fixed to microtitre plates through hydrophobic interactions, and 

subjected to three rounds of 'panning' (recovery of bound phage followed by their 

reapplication for the next round). Following the 3'"'̂  panning, 17 enriched phage 

plaques were sequenced. The sequence analysis yielded the peptide sequence 

SWLELRP, which was found in 7 out of 17 (approximately 40%) phage plaques 

sequenced (Table 11A).

Verification of the a4(C)/Peptide Interaction

Phage ELISA (Section 2.19.1.5) was used to verify the interaction of a4(C) 

with the SWLELRP-displaying phage. Phage concentration ranging from 1 x 10”'° 

to 2.26 X 10”’”' pfu, employing two-fold dilutions was applied to immobilised a4(C). 

Results obtained (Figure 24) show a significant binding affinity of this phage 

displayed peptide to a4(C) protein compared to the control where no pre-coated 

a4(C) was present. Maximum binding was observed in the range of 1-2 x 10̂  ̂

phage virions/well, which is similar to the concentration of phage virions used in 

each of the panning procedures in the phage display procedure. 

identification of Candidate Ligands

The program Basic Local Alignment Search Tool (BLAST) 

(http://www.ncbi.nlm.nih.qov/BLAST/) was used to search for homology between 

the identified amino acid sequence (SWLELRP) and protein database sequences. 

Using the 'short nearly exact matches' option, comparative BLAST analysis 

revealed at least four proteins that contain either almost the entire SWLELRP or 

very similar peptide sequences (Table 12). Of the four proteins identified, 

phosphofructokinase 1 (PFK-1), a key participant in the glycolytic pathway,
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contains a sequence (at the C-terminus of PFK-1) with almost complete homology 

to SWLELRP. Aligning this sequence with other selected phage clone sequences 

revealed a longer consensus motif EQWWLKLRP (Table 118). This matched 

region within PFK-1 is highly conserved among mammalian PFK-1 orthologues 

and paralogues (Table 11C). In addition to PFK-1, PKC and cytochrome P450 also 

contain sequences with relatively high homology to the peptide SWLELRP. PKC 

plays a key role in regulating the differentiation and growth of diverse cell types 

and cytochrome P450 catalyses reactions involved in drug metabolism and 

synthesis of cholesterol, steroids and other lipids. The involvement of PKC in the 

dissociation of V-ATPase induced by glucose removal in yeast has been ruled out 

(Parra and Kane, 1998). However, a protein-protein interaction between aldolase 

(a glycolytic enzyme) and the E subunit of the V-ATPase has previously been 

reported (Lu et al., 2001). Therefore, PFK-1 was considered to be a very good 

candidate for an a4(C) ligand.
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Clone
numbers

Selected Sequences
Peptide

1 TCT TGG CTT GAG TTG CGT CCT SWLELRP
2 TCT TGG CTT GAG TTG CGT CCT SWLELRP
3 TCT TGG CTT GAG TTG CGT CCT SWLELRP
4 TCT TGG CTT GAG TTG CGT CCT SWLELRP
5 TCT TGG CTT GAG TTG CGT CCT SWLELRP
6 TCT TGG CTT GAG TTG CGT CCT SWLELRP
7 TCT TGG CTT GAG TTG CGT CCT SWLELRP
8 GAG GGT TGG CAT GCT CAT ACG EGWHAHT
9 GAG GGT TGG CAT GCT CAT ACG EGWHAHT

1 0 GAG GGT TGG CAT GCT CAT ACG EGWHAHT
1 1 GAG GGT TGG CAT GCT CAT ACG EGWHAHT
1 2 GAG GGT TGG CAT GCT CAT ACG EGWHAHT
1 3 AAG CTG TGG ACT ATT AAG CCG KLWTIKP
1 4 AAG CTG TGG ACT ATT AAG CCG KLWTIKP
1 5 GCG CAT ACT CTT CCT GGG CGT AHTLPGR
1 6 GCT CAT CCT CTG ATG CTT TAT AHPLMLY
1 7 AAT CAG AAG GAG TAT ACG CTT NQKEYTL

B
Peptide sequences Number of clones

s w L E L R P 7
K L W T I  K P 2

A H p L M L Y 1
A H T L P G R 1

N Q K E Y T L 1
E G W H A H T 5
E Q w W L K L R P

SWLELRP
EQWWLKLRP

Human muscle type PFK-1 
Mouse muscle type PFK-1 
Rabbit muscle type PFK-1 
Human platelet type PFK-1 
Mouse platelet type PFK-1 
Rabbit platelet type PFK-1 
Human liver type PFK-1 
Mouse liver type PFK-1

739 EQWWLKLRP 747 
739 EQWWLKLRP 747 
739 EQWWLKLRP 747 
748 EQWWLKLRP 756
747 EQWWLKLRP 755
748 EQWWLKLRP 756 
738 EQWWLSLRL 746 
738 EQWWLNLRL 746

Table 11 Peptide sequences selected against a4(C) from the 3"̂  ̂ panning of 
the 7-mer random peptide M13 phage display library.
A, Sequences of a4(C)-binding peptides selected from MIS phage display library. Phage 
clones that bound a4(C) were isolated after three rounds of high stringency panning from 
a 7-mer random peptide MIS phage display library. B, Red coloured residues indicate 
contributors from both the directly selected peptide sequence SWLELRP and other related 
clones to a 12-mer consensus peptide, sequence EQWWLKLRP. C, Conservation of the 
directly identified and the consensus peptide sequence within human, mouse and rabbit 
muscle, platelet and liver PFK-1 isozymes.
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Figure 24 Phage ELISA of output phage (SWLELRP) from the 3""̂  panning of 
the 7-mer random peptide library.
Binding affinity of SWLELRP-displaying phage to a4(C) was determined with 2-fold serial 
dilutions of phage virions from 2.26 x 10̂  ̂ phage/well. Specific binding of a4(C) to the 
peptide SWLELRP is shown.
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4.2.1.2 Screening Phage Display Library with a4(Loop2)

Identification of Potential Binding Phage Displayed Peptide

Refolded a4(Loop2) was used as a target protein to screen both the Ph.D 

7- and 12-mer random peptide M l3 phage display libraries (NEB) as described in 

Section 2.19.1.2. Following the 3""̂  panning, 19 and 21 enriched phage clones from 

each screen were sequenced. Of the 19 phage clones isolated from the 7-mer 

library screen, no specific residue pattern which was predominant over others was 

observed (Table 13). However, 5 out of 19 clones (approximately 26%) were found 

to display the sequence, K(V/L)WVIP(Q/R) (clones 1-5), although others were 

almost completely random (clones 6-19). This K(V/L)WVIP(Q/R) residue pattern 

was not clearly shown in the clones selected from the 12-mer library screen, 

although a few clones containing K(V/L)WVIP(Q/R)-like patterns were present 

(data not shown). Again, no overwhelming residue pattern emerged from this 

screen.

To gain further information, an additional round (4̂  ̂ panning) was carried 

out for both screens. 36 and 21 phage clones from each screen were sequenced. 

The sequence analysis from the 7-mer library screen yielded the peptide 

sequence KLWVIPQ, which was found in 14 out of 36 phage plaques sequenced 

(clones 1-14, Table 14A). Aligning this predominant residue pattern, KLWVIPQ, 

with 13 other peptide sequences (clones 15-27) revealed the sequence motif 

K(LA/)WVIPQ (Table 148), which also appeared after the 3’’̂  panning as 

mentioned above. This sequence motif represented about 75% (27 out of 36) of 

the total phage clones sequenced, indicating a large tendency of this sequence 

motif to react with a4(Loop2). However, the rest of the nine sequences (clones 28- 

36) showed no homology to the predominant residue pattern and appeared to be 

relatively random. Again, no residue pattern, which is predominant over others,
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emerged with the 12-mer library screen after the 4*̂  panning (Table 15). 

Nevertheless, the K(LA/)WVIPQ-like pattern was seen within several bound 

peptide sequences (bold residues).

Verification o f the a4(LooD2)/PeDtide Interactions

The interaction of a4(Loop2) with the KLWVIPQ-displaying phage was 

confirmed by ELISA binding assay (Figure 25). Phage concentration ranging from 

0.4 to 10 X 10^ pfu was used which are similar to the concentration of phage 

virions used in each of the panning in the phage display procedure. Results 

obtained showed significant binding affinities of KLWVIPQ phage displayed 

peptides to immobilised a4(Loop2) protein compared to the control where no pre­

coated a4(Loop2) was present. This peptide exhibited a strong interaction with 

a4(Loop2) that was significantly above the background level across the whole 

range of phage concentration used. In addition, the interaction of a4(Loop2) with 

the KVWTLPAHVTPR-displaying phage (Table 15, clones 15 and 16) was also 

confirmed by phage ELISA (data not shown).

135



Clone « n j « PeptideSelected Sequences ^numbers Sequences
1 TTC CAC ACC CAA GAC GGA TCC KVWVLPR
2 TTC CAA ACC TGC TAA GGA GCC KVWTIPR
3 TTC GAC ACC CAC TAA GGA GTC KLWVIPQ
4 TTC GAC ACC CAC TAA GGA GTC KLWVIPQ
5 TTC CAC ACC TTC TAA CTA CTC KVWKIDE
6 AGC GAA CTA AGC GGC CAA AGA SLDSPVS
7 TTC TTC TAC TTC TCC GCC TTC KKMKRRK
8 AAC GGA GGA TTA AGC GCC TGC LPPNSRT
9 GTC GTA ATA GGA ATA TGC GCA QHYPYTR

10 CTA GGA CAA GAA TAA GAC GAA DPVLILL
11 GTA TGA GGA TTC GTC TTA GGA HTPKQNP
12 AGA GTA ACC AGC GAC CGC GTA SHWSLAH
13 CAC AAC GTC CTC TAA CTC GCC VLQEIER
14 AAA AGC GTC GGC GTC TAA AGC FSQPQIS
15 TGC TAC CGC GTC GTA TAC TGA TMAQHMT
16 AAA GGC GGA GTC GTC GGC GGC LPPQQPP
17 ATA TGA CGA ATA GGC GTC GGA YTAYPQP
18 CGC TGA TTA AAA TAC TGA CCA ATNFMTG
19 CCA AGC GGA CCC GAC GAA GGC GSPGLLP

Table 13 Peptide sequences selected against a4(Loop2) from the 3"̂  ̂panning 
of the 7-mer random peptide Ml 3 phage display library.
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Clone Sequences correspond to codon strand Peptide 

numbers (S' 3') Sequences
1 AAG CTG TGG GTG ATT CCT CAG KLWVIPQ
2 AAG CTG TGG GTG ATT CCT CAG KLWVIPQ
3 AAG CTG TGG GTG ATT CCT CAG KLWVIPQ
4 AAG CTG TGG GTG ATT CCT CAG KLWVIPQ
5 AAG CTG TGG GTG ATT CCT CAG KLWVIPQ
6 AAG CTG TGG GTG ATT CCT CAG KLWVIPQ
7 AAG CTG TGG GTG ATT CCT CAG KLWVIPQ
8 AAG CTG TGG GTG ATT CCT CAG KLWVIPQ
9 AAG CTG TGG GTG ATT CCT CAG KLWVIPQ

1 0 AAG CTG TGG GTG ATT CCT CAG KLWVIPQ
1 1 AAG CTG TGG GTG ATT CCT CAG KLWVIPQ
1 2 AAG CTG TGG GTG ATT CCT CAG KLWVIPQ
1 3 AAG CTG TGG GTG ATT CCT CAG KLWVIPQ
1 4 AAG CTG TGG GTG ATT CCT CAG KLWVIPQ
1 5 AAG GTT TGG ACG ATT CCT CGG KVWTIPR
1 6 AAG GTT TGG ACG ATT CCT CGG KVWTIPR
1 7 AAG GTT TGG ACG ATT CCT CGG KVWTIPR
1 8 AAG GTT TGG ACG ATT CCT CGG KVWTIPR
1 9 AAG GTT TGG ACG ATT CCT CGG KVWTIPR
2 0 AAG GTT TGG ACG ATT CCT CGG KVWTIPR
2 1 AAG CTT TGG AAG ATT CCT ACT KLWKIPT
22 AAG GTG TGG TAG ATG ACT TAT KVWQMTY
2 3 AAG GTG TGG CAG CTG CAT TCT KVWQLHS
2 4 AAG GTG TGG CAG CTG CAT TCT KVWQLHS
2 5 AAG GTG TGG TAG ATT AAT TCG KVWQINS
26 AAG GTT TGG ATT ATT AAT TCT K VW IINS
2 7 AAG GTT TGG TAT ATT ACG CCT KVWYITP
28 CAG GGG CAG ACT CCG AGT ACG QGQTPST
29 AAG AAG ATG AAG AGG CGG AAG KKMKRRK
3 0 AAG AAG ATG AAG AGG CGG AAG KKMKRRK
3 1 AAG AAG ATG AAG AGG CGG AAG KKMKRRK
32 ATG TAT TCT GGG CCG ACT AGG MYSGPTR
3 3 TOT ATT CTG CCG TAT CCT TAT S IL P Y P Y
3 4 TOT TCT AGT GTT GTG ACT CAT S S S W T H
3 5 TCT TCT AGT GTT GTG ACT CAT S S S W T H
36 TOG CTT ACT AGT ACG CAT ATG SLTSTHM

a
Peptide Sequences No. of Clones

K L w V I P Q 1 4
K V w T I P R 6
K L w K L P T 1
K V w Q M T Y 1
K V w Q L H S 2
K V w Q I N S 1
K V w Y I T P 1
K V w I I N S 1
K L /V w V I P Q 2 7

Table 14 Peptide sequences selected against a4(Loop2) from the 4̂  ̂panning 
of the 7-mer random peptide Ml 3 phage display library.
A, Peptide sequences selected from the a4(Loop2) protein screen of the random 7-mer 
peptide MIS phage display library after the 4̂  ̂panning. B, Red coloured residues indicate 
contributors from both the directly selected peptide sequence KLWVIPQ and other related 
clones to the sequence motif K(LA/)WVIPQ.
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Clones_______ Seoences for codon strand (5' -» 31__________ Peptides
1 TAT AGT CTG AGG GCT GAT TCT AGG TGG YSLRADSRWMPS
2 AAG TGT TGT TAT TAT GAT CAT TCG CAT KCCYYDHSHALS
3 AAG TGT TGT TAT TAT GAT CAT TCG CAT KCCYYDHSHALS
4 AAG GTT TGG CCT CCG CAT CCT ATT CCT KVWPPHPIPTRT
5 AAG GTT TGG CCT CCG CAT CCT ATT CCT KVWPPHPIPTRT
6 ACT ATG AAG TGT TGT TAT TCG AAT ACT TMKCCYSNTSPP
7 ACT ATG AAG TGT TGT TAT TCG AAT ACT TMKCCYSNTSPP
8 ACT ATG AAG TGT TGT TAT TCG AAT ACT TMKCCYSNTSPP
9 AAG GTT TGG TAT CAT ACT TGG CCG TCG KVWYHTWPSKTP

10 CAT AGT CTG CGT ACG GAT TGG TCT TCG HSLRTDWSSPSR
11 CAT AGT CTG CGT ACG GAT TGG TCT TCG HSLRTDWSSPSR
12 AAG GTT TGG GAT TGG CAG CCG TCT CAG KVWDWQPSQATV
13 ACG CTT TCG CGG AAG AAG GAT CGG TTT TLSRKKDRFKNK
14 AAG ATT GTT CCT ACG GAT TGG GTT TCG KIVPTDWVSARS
15 AAG GTT TGG ACG CTG CCT GCT CAT GTT KVWTLPAHVTRP
16 AAG GTT TGG ACG CTG CCT GCT CAT GTT KVWTLPAHVTRP
17 AAG GTT TGG GAT TTT AAG CCG CAT AAT KVWDFKPHNNMY
18 GCG TCT CTG AGG CAT GAT CAT TCT CAT ASLRHDHSHVLP
19 AAG CTG TGG ACG ATT CCT AGT AAT GAT KLWTIPSNDYPP
20 TTG GAG GCG AAG ATT TGG GTG GTG CCT LEAKIWWPAPS
2 1 CAT CCT CAT AAT AAG TGG CCT CCT GCG HPHNKWPPATPT

Table 15 Peptide sequences selected against a4(Loop2) fron the 4*̂  panning 
of the 12-mer random peptide M13 phage display library.
Bold residues indicate contributors to the sequence motif K(LA/)WVIPQ.
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Phage ELISA

E
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O
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Q)
O
C
(0
£t

0.4

S ° - 2
n
<  n

20 4 6 10 128

a4(Loop2)+KLV\A/IPQ 

• Control

11Concentration of Phage (x 10 )

Figure 25 Phage ELISA of output phage (KLWVIPQ) from the 4“̂  panning of 
the 7-mer random peptide library.
Binding affinity of KLWVIPQ-displaying phage to a4(Loop2) was determined with serial 
dilutions (-2.5-fold dilutions) of phage virions from 10 x 10̂  ̂phage/well. Specific binding 
of a4(Loop2) to the peptide KLWVIPQ is shown.
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Identification of Candidate Ligands

The database searches using the same program as described in Section

4.2.1.1 revealed at least four proteins that contain either almost the entire 

KLWVIPQ or very similar peptide sequences (Table 16). Of the identified proteins, 

the ATP-binding cassette (ABC) protein O il (ABC C11), also called MRP8, has 

the highest homology to the peptide identified. This protein is a newly identified 

member of ABC transporter superfamily with an integral membrane location and 

relatively high-level expression in kidney tissues (Bera et al., 2001; Tammur et al., 

2001; Yabuuchi et al., 2001). Very recently, ABC C11 has been characterised as 

an amphipathic anion transporter that is able to efflux cAMP and cGMP and to 

function as a resistance factor for commonly employed purine and pyrimidine 

nucleotide analogues (Guo et al., 2003). However, the physiological relevance of 

this protein to the functions of proton pump is not apparent. The functions of other 

proteins identified have not ever been reported.
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4.2.2 Yeast Two-hybrid Assays

To search for protein binding partners of the a4(Loop2) [or a4(N)], Y2H 

assays were performed using the CytoTrap two-hybrid system, with a4(Loop2) [or 

a4(N)] as the bait, selecting from a human testis cDNA library (Stratagene).

4.2.2.1 Construction of Bait Plasmids

The cDNA sequences encoding a4(Loop2) [or a4(N)] were amplified by 

high fidelity PGR [or LR-PCR] using primer 9 [or 3] (forward) and primer 10 [or 4] 

(reverse) (Table A.3). The resulting 235 bp [or 1.194 kb] Sal\-Not\ PGR fragment 

was cloned into Sail and Notl sites of pSos vector. The subsequent identification 

of positive clones and verification of inserts were carried out as described in 

Section 3.2.1.1.

4.2.2.2 Assessment of Bait Plasmid

Prior to proceeding with library screens, both bait plasmids, pSos- 

a4(Loop2) and pSos-a4(N) constructed as above were subjected to the 

recommended bait verification test as described in Section 2.19.2.4. Each bait 

construct was co-transformed with empty pMyr vector into cdc25H and assessed 

for growth at 37°G on both SD/Gal (-UL) and SD/GIc (-UL) plates. Yeast colonies 

were observed at 25°G, but not at 37°G after 5-day incubation with both constructs 

(Figure 26), indicating that the Sos-a4(Loop2) or Sos-a4(N) fusion does not 

interact with the myristylation signal in the absence of an interaction partner. This 

result also indicates that neither a4(loop2) nor a4(N) contain sequences that target 

the Sos-bait fusions to the cell membrane. In other words, the two constructs did 

not show any auto-activation and therefore are both suitable for use with the Y2H 

system.
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25°C 37°C

SD/Gal (-UL)

SD/GIc (-UL)

Figure 26 Assessment of the bait plasmids.
The pSos-a4(Loop2) bait plasmid was co-transformed with empty pMyr vector into 
cdc25H. Growth was observed at 25°C {Panel 1 and 3), but not at 37°C {Panel 2 and 4) 
on both SD/Gal (-UL) and SD/GIc (-UL) plates after 5-day incubation. Data for construct 
tests of pSos-a4(N) were of similar quality, but not shown.
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4.2.2.S Yeast Two-hybrid Screen with a4(Loop2)

Library Screening

Library screens and substantial patching tests were carried out as 

described in Section 2.19.2.5. pSos-a4(Loop2) bait plasmid was co-transformed 

with human testis cDNA library into the cdc25H (strain a) competent cells. Empty 

pSos vector replaced the bait plasmid as a negative control to estimate the 

number of false positive colonies from the library and of temperature sensitive 

revertants. After screening approximately 1.5 x 10"̂  yeast clones, 138 interactor 

candidate colonies were obtained on SD/Gal(-UL) plates incubated at 37°C. 

Altogether 8 colonies appeared on the control plate. Patching tests revealed that 

all of the 8 colonies from the control plate were temperature sensitive revertants of 

cdc25H strain, as they all showed growth phenotype on SD/Glc(-UL) plate 

incubated at 37°C. This indicates that no false positive colonies from the library 

were obtained. To exclude temperature sensitive revertants from the 138 

interactor candidates, the same patching test was performed as with the control 

sample. From this, 4 colonies grew on SD/Gal(-UL) plates, rather than SD/Glc(- 

UL), at 37°C, suggesting that interactions occurred between the bait and target 

proteins. These identified colonies were known as putative positives.

Verification of Putative Positive

The mating test described in Section 2.19.2.6 was used to verify the 

identified putative positive clones. Prior to the assay, the 4 putative positives were 

cured to remove pSos-a4(Loop2) bait plasmid. Following curing, the putative 

positives (in strain a) containing only the potential target constructs were co­

patched with pSos-a4(Loop2) which was previously transformed into strain a of 

cdc25H cells. pSos Col I replaced pSos-a4(Loop2) as a negative control. Of the 4 

putative positives, 1 grew, at 37°C, on SD/Gal(-UL) plates mated with bait plasmid
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containing cells, but not with the control, demonstrating that an interaction had 

occurred between a4(Loop2) and the target protein. This result also indicates that 

the interaction between the bait and target is specific in the Y2H system, as no 

growth was observed from the controls (Figure 27). This clone was named 

positive. However, the other 3 putative positives showed mating with both bait 

containing cells and control, suggesting that non-specific interaction had occurred.

This positive clone was subsequently subjected to the target plasmid 

isolation, and the plasmid isolated was then used as template in a PCR reaction 

using primers 22 (forward) and 23 (reverse) (Table A.3). The resulting PCR 

fragment (-2.5 kb) was submitted to DMA sequencing using primer 22 (Table A.3). 

Database searches (http://www.ncbi.nlm.nih.qov/BLA8T/) revealed that the cDNA 

clone had 60% identity to the coding sequence for a human hypothetical protein 

(NP_078891). However, no known functions of this protein have been reported.
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4.2.2.4 Yeast Two-Hybrid Screen with a4(N)

Library Screening

The pSos-a4(N) bait plasmid was co-transformed with human testis cDNA 

library into the cdc25H (strain a) and empty pSos vector replaced the bait plasmid 

as a negative control, as described in Section 4.2.2.3. After screening 

approximately 1.75 x 10"̂  yeast clones, 205 interactor candidate colonies were 

obtained. Altogether 14 colonies appeared on the control plate, which were all 

identified as temperature sensitive revertants after the patching tests. The same 

patching tests were performed to all interactor candidate colonies selected, and 

this resulted in 10 putative positives.

Verification of Putative Positives

The 10 putative positives were first cured and then subjected to mating 

tests. Of these 10 putative positives, 5 clones grew, at 37°C, on SD/Gal(-UL) 

plates mated with bait plasmid containing cells, but not with the control, 

demonstrating interaction had occurred between a4(N) and these five target 

proteins within the colonies identified. This result also indicates that the 

interactions between the bait and targets are specific, as no growth was observed 

from the controls. Data for the mating tests were of similar quality as shown in 

Figure 27 (but are not actually shown). However, the other five putative positives 

showed mating with both bait containing cells and control, suggesting that non 

specific interactions had occurred.

Four of the five positive clones were successfully sequenced and database 

searches revealed that the four cDNA clones had almost complete homology to 

the coding sequences of three human proteins. These proteins are shown in Table 

17, together with the region of the protein responsible for the interaction and their 

putative assigned functions. Two cDNA clones had approximately 90% identity to
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the coding sequence for an unknown protein (AAH19030), the third clone had 90% 

identity to a hypothetical protein (NP_116256) and the fourth clone had 100% 

identity to the coding sequence for human proteasome beta 1 subunit 

(NP_002784). The proteasomes are protein degradation machines, which play a 

number of important roles in cell life. One of their major roles is to remove 

abnormal and misfolded proteins from the cell (Coux et al., 1996). The proteasome 

is a large complex which is present in the nucleus, cytosol, ER and lysosomes of 

all eukaryotic cells examined (Rivett et al., 1992; Scherrer and Bey, 1994).
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4.3 Discussion

The purpose of this study was to identify ligands binding to a4(N), 

a4(Loop2) and a4(C). Two library-based methods, phage display and the Y2H 

system, were used for this investigation. Successful expression of a4(Loop2) and 

a4(C) enabled them to be used as target proteins to screen random peptide phage 

display libraries. However, the identification of ligands for a4(N) could only be 

attempted with the Y2H system due to unavailability of folded a4(N) protein.

Phage display analysis using a4(C) as a target to screen the 7-mer random 

peptide library selected a single specific displayed peptide in approximately 40% 

of cases. The interaction of a4(C) with this peptide, SWLELRP, was confirmed by 

a phage ELISA. Database searching revealed that this residue pattern is almost 

completely homologous to part of the enzyme PFK-1. This matched region is at 

the C-terminus of PFK-1, and this region within PFK-1 is highly conserved among 

mammalian PFK-1 orthologues and paralogues. Activity of this enzyme is the rate- 

limiting step in glycolysis. Linkage of the glycolytic enzyme aldolase to the proton 

pump through protein-protein interaction has been previously reported (Lu et al., 

2001). This resulted in PFK-1 being in a more advantageous position to be a 

potential binding partner compared to the other proteins identified. It was therefore 

decided to examine this interaction in greater detail as described in the next 

chapter.

The screening of a random 7-mer peptide phage display library with 

immobilised a4(Loop2) protein selected a single specific displayed peptide, 

KLWVIPQ, which overwhelmed others. Alignment of this sequence with other 

bound phage peptide sequences revealed a sequence motif K(LA/)WVIPQ in 

approximately 75% of cases. Although this residue pattern had not clearly 

emerged through panning with random 12-mer peptide phage display library,
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some K(LA/)WVIPQ-like patterns were seen from this screen. The interaction of 

a4(Loop2) with the peptide, KLWVIPQ, was confirmed by a phage ELISA. 

However, database searches did not reveal any proteins which have apparent 

physiological relevance to V-ATPases. ABC 011 (MRP8) seems, however, to be 

interesting for two reasons. Firstly, it is an integral membrane protein and is 

expressed at relatively high levels in human kidney (Yabuuchi et al., 2001), 

although absence of expression of this gene in the kidney was also reported 

(Tammur et al., 2001). Secondly, some multidrug resistance (MDR) cell lines have 

been found that overexpress subunit 0  of the V-ATPase while they overexpress 

MRPs (Ma and Center, 1992). Nevertheless, evidence that directly links the 

activities of V-ATPase and MRPs is scarce. Therefore it would have been hard, at 

this stage, to select this protein as a potential binding candidate for further 

characterisation. In addition, for those unknown and hypothetical proteins, it would 

also have been difficult to perform further investigations due to lack of any 

functional information and of availability of antibodies etc.

Identification of a binding sequence, but not an actual protein of interest 

might be due to the following disadvantages of the phage display libraries and 

database searches used. Firstly, in both libraries, the peptides are very short linear 

sequences. In reality, protein-protein interactions can be roughly divided into two 

basic types: those that involve the recognition of a continuous, linear stretch of 

amino acids and those that involve binding contacts spread over large, non­

contiguous surfaces. In the latter type, formation of multiple residues involved for 

interaction requires a correctly folded protein, and these residues may be far apart 

in the primary amino acid sequence. However, the methods used for searching for 

binding ligands from databases rely only on the primary structure of proteins. In 

other words, the searches can only fish for those proteins that have interacting
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sequences of a continuous and linear stretch of amino acids to the identified 

peptide, whereas proteins having interacting sequences formed by non-contiguous 

residues similar to the identified peptide would be missed. Secondly, the peptide 

sequences in the libraries were constructed artificially according to the possible 

recombination of the 20 amino acids, and it is very likely that some of them do not 

occur in proteins from natural sources. Also, it is possible that some artificial 

peptides might somehow have a greater affinity for binding to a target protein than 

those naturally occurring sequences in an in vitro assay. Both of the above cases 

can sometimes cause confusion during investigation. However, strong binding of 

a4(Loop2) to the peptide, KLWVIPQ, shown by ELISA indicated that the 

interactions were specific and real, at least confirmed in the phage display assays.

To gain further insight into potential partners for a4(Loop2), an alternative 

library-based method, Y2H assay was performed. One positive clone whose 

sequence matched (-60%) with a hypothetical protein in the protein databases 

was identified. Regarding the hypothetical protein, little information is available, so 

further investigations on this interaction were hard to be envisaged. The Y2H 

system was also used to identify proteins capable of binding to a4(N), which 

revealed three proteins from the database. Interestingly, the proteasome appeared 

as a potential binding partner in one of the positive clone identified. The 

proteasome is an essential component of the ATP-dependent proteolytic pathway. 

This protein catalyses the rapid degradation of most cellular proteins, such as 

those highly abnormal or misfolded proteins which may arise by mutation or 

postsynthetic damage (Coux et al., 1996). In addition, proteasomes were also 

found to be involved, together with other ER quality control components, in the 

degradation of proteins that appeared to have a normal structure but failed to be 

assembled in the ER (Hill and Cooper, 2000). Whether or not the binding of
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proteasome to a4(N) seen in the Y2H analysis implies that a4(N) has not properly 

folded or is no longer necessary in that particular clone remains unclear. However, 

results obtained from a series of tests during the Y2H analysis indicated that the 

a4(N)/target interactions were specific and real, at least in this Y2H system. 

However, this needs to be further confirmed by other physical strategies in order to 

exclude the possibility of ‘false positives'.

There are two important considerations that must be taken into account 

when using the Y2H system. One possibility is that the proteins may adopt a 

different tertiary structure when expressed as fusions with either Sos or Myr 

proteins, which could potentially inhibit the binding of true protein partners. 

Another possibility is that the efficiency of the yeast cell transformation could also 

affect the outcome of the assays. In both library screens, either using a4(Loop2) or 

a4(N) as a bait, the number of clones screened were at a magnitude of 10"̂ , 

whereas the number of primary clones in the library used are at an magnitude of 

10® . Therefore, even though each of the 10"̂  clones screened contained different 

target cDNA plasmid, there were still approximately 10^ target cDNAs missing from 

the screen. Both of these problems could possibly give rise to a ‘false negative’ 

result.

In conclusion, through the systematic technique of phage display, I 

identified a potential a4(C) interacting partner, PFK-1. The possible interaction 

between these two proteins suggests a direct link between proton pump activity 

and the glycolytic pathway. Therefore, further investigations, in greater detail of 

this interaction, were carried out as described in the next chapter. In addition, I 

was interested to see whether or not the ubiquitously expressed human a1 subunit 

of V-ATPase also interacts with PFK-1. If this is the case, coupling between the V-
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ATPase and glycolysis through the PFK-1/a subunit interaction could be a 

common mechanism.
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CHAPTER 5 
CHARACTERISATION OF INTERACTION BETWEEN a4(C) AND 

ITS POTENTIAL BINDING PARTNER PFK-1

5.1 Introduction

As mentioned earlier, all studies to date have demonstrated that the a 

subunit of the proton pump plays crucial roles in the coupling of ATP hydrolysis 

(Vi) and proton transport (Vo). Since its soluble C-terminal tail has already been 

shown to play potential roles in the assembly, stabilising or targeting of the a 

subunit as well as proton translocation (Leng et al., 1998), I chose to further 

investigate the possible binding partners for this part of the molecule to further 

explore its possible functions. As described in Chapter 4, to identify proteins that 

interact with a4(C), a random 7-mer peptide phage display library was used to 

select epitopes with high binding affinity. Through this library-based strategy, one 

a4(C)-binding peptide sequence, SWLELRP, was identified that showed high 

homology to the glycolytic enzyme PFK-1. This pattern is highly conserved among 

mammalian PFK-1 orthologues and paralogues. Activity of this enzyme is the rate- 

limiting step in glycolysis. The specificity of binding of a4(C) to this peptide was 

confirmed by phage ELISA. This finding suggests that PFK-1 is a potential binding 

partner of the a4 C-terminal soluble tail.

However, ‘false-positives’ can occur in any library-based screen. Thus, it is 

imperative that any interactions that have been identified in a screen are confirmed 

by alternative assays. A common strategy is to perform an in vitro pull-down assay 

using recombinant protein(s), which can provide evidence of physical association 

between the tested proteins. However, this type of assay is usually not enough to 

extend the systematic assay, since the recombinant proteins used are usually at 

relatively high concentration, which may not accurately reflect the situations that
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occur within cells. In addition to in vitro pull-down analysis, co-localisation of the 

putative interacting proteins in cells in culture or tissue samples by 

immunofluorescence microscopy would be supportive of a ‘genuine’ interaction. 

Nevertheless, the optimal method for confirming the validity of a physiological in 

vivo interaction between two proteins is the co-immunoprecipitation of the 

interacting endogenous proteins from a tissue sample.

This chapter presents several lines of evidence to demonstrate the a4/PFK- 

1 protein-protein interaction, via the C-terminus of a4. Assays, including in vitro 

pull-down analysis, co-immunoprecipitation and immunofluorescence microscopy 

were performed and the results obtained indicate binding of PFK-1 to a4. The 

association between these two proteins indicates a direct link between the V- 

ATPase and the ATP-generating glycolytic pathway in the kidney, suggesting the 

possibility of a regulation mechanism between energy supply and V-ATPase 

function.

Having identified the specific interaction between a4(C) and PFK-1, I 

wanted to investigate whether the interaction was disrupted or influenced by the 

mutations in a4(C) identified from patients. In an attempt to address this question, 

additional in vitro pull-down assays with recombinant a4(C) mutants were carried 

out. Also, studies using the Surface Plasma Resonance (SPR) technique were 

subsequently performed in order to compare the binding affinities of a4(C)/PFK-1 

and a4(C) mutants/PFK-1 interactions.

SPR provides a powerful tool for analysis of protein-protein interactions, 

which allows macromolecular interactions to be measured in real time. BIAcore is, 

so far, the most widely used SPR-based system (Jonsson et al., 1991). In recent 

years, use of BIAcore biosensor technology has increased steadily in the 

investigation of protein-protein interactions. The use of BIAcore biosensors
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provides excellent instrumentation for a label-free, real-time investigation of 

protein-protein interactions. This system offers particular advantages for analysing 

weak macromolecular interactions, allowing measurements that are not possible 

using some other techniques (van der Men/ve and Barclay, 1994, 1996). Another 

major advantage of this system over other techniques, such as stopped-flow, 

analytic centrifugation and isothermal titration calorimetry (ITC), is that much 

smaller amounts of protein samples are required. The principle underlying this 

technology relies on the SPR phenomenon, which transforms the specific incident 

angle of the light reflected from a metallic surface in response to the substance 

bound to the surface. In other words, signals are gained from the changes of 

refractive index due to the increased mass obtained from a bound protein. Based 

on these data a broad range of applications, including the comparison of a specific 

protein-protein interaction between wild-type and mutants, can be achieved.

5.2 Results

5.2.1 PFK-1 and a4 Immunoreactivities in Human Kidney

Prior to examining the interaction between PFK-1 and the a4 subunit in

human kidney, a commercially available goat polyclonal antibody directed against

rabbit muscle-type PFK-1 (Chemicon International Ltd) was tested for

immunoreactivity against human kidney cytosolic and membrane protein fractions

prepared as described in Section 2.16.1. 10 pg of each sample was subjected to

12% SDS-PAGE and Western blotted using a-PFK-1 antibody at 1:2000 dilution.

As displayed in Figure 28 (panel A), this antibody recognised a band of the correct

size for human PFK-1 (approximately 85 kDa) in both fractions, which as expected

was more prominent in the cytosolic portion. The RA2922 antiserum directed

against the last 14 amino acid residues of human a4 was also tested for
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immunoreactivity against human kidney cytosolic and membrane portions in the 

same way and the results obtained are shown in Figure 28 {panel B). As 

previously documented (Smith et al., 2000), the RA2922 antibody recognised a 

band of the correct size for human a4 (approximately 116 kDa) in membrane 

protein fraction, but not in cytosolic protein fraction. What the lower band, 

(approximately 55 kDa) seen in both fractions, represents is not clear.

5.2.2 Co-immunoprecipitation

To examine whether a4 and PFK-1 interact In vivo, a co- 

immunoprecipitation assay was carried out using the a-PFK-1 antibody for 

precipitation and RA2922 antibody for detection. The experimental procedures 

were carried out as described in Section 2.21.3. The a-PFK-1 antibody was 

covalently coupled on agarose beads followed by incubation with solubilised 

human kidney membrane protein fraction. After extensive washes, bound proteins 

were eluted and subjected to 12% SDS-PAGE electrophoresis and Western 

blotted using both RA2922 antibody (1 in 1000 dilution) and a-PFK-1 antibody 

(1:1000 dilution). The resulting blot, showing a single major band at approximately 

116 kDa recognised by the a-a4 antiserum (Figure 29A, +lane), conforms to 

previous analysis (Smith et al., 2000) and the activity assay shown in Figure 288 

using this antibody. An identical blot probed with the a-PFK-1 antibody revealed a 

band of the correct size, confirming the presence of the enzyme (Figure 298, 

+lane). This demonstration of the co-precipitation of these two proteins indicates 

their interaction. Interestingly, a4 was present only in the protein sample prepared 

with n-NDG as the detergent in both solubilisation and washing buffers (panel C, 

lane 2), and not when CHAPS was used [panel C, lanes f(CHAPS only) and 3 

(CHAPS and n-NDG)]. Specificity of the assay was confirmed by absence of a4 

when the precipitating antibody was omitted (-lanes).
158



PFK -1- a

B

a 4 -  ( #  -105 kDa

r  50 kDa

Figure 28 Immunoreactivity assays
10 |Lig of either human kidney cytosolic protein fraction (hkCp) or membrane protein 
fraction (hkMp) were subjected to SDS-PAGE. Western blot analysis using a-PFK-1 
antibody demonstrated an 85 kDa band corresponding to the PFK-1 protein in both 
fractions {panel A). Western blot analysis using RA2922 antibody demonstrated a 116 
kDa band corresponding to the a4 protein in membrane protein fractions, but not in 
cytosolic protein fraction {panel B).
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Figure 29 Co-immunoprecipitation.
The membrane protein fraction of fresh frozen human kidney was solubilised and 
immunoprecipitated using rabbit muscle type PFK-1 antibody (+ lanes). A, Detection of a4 
(approximate 116 kDa, arrowed) was performed using RA2922 [anti-a4(C)] antiserum, 
and indicates co-precipitation of these two proteins. B, Probing with the precipitating 
antibody confirmed the presence of PFK-1 (approximately 85 kDa, arrowed) in the 
precipitated complex. C, Effects of detergents. - indicates negative control where a-PFK- 
1 antibody was omitted.
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5.2.3 Affinity Pull-down Assays of the Protein-protein Interaction

I was interested to see whether the interaction between a4(C) and PFK-1 

was also true of the C-terminus of the ubiquitously expressed a1 subunit [a1(C)]. If 

this was the case, coupling between the V-ATPase and glycolysis through the 

PFK-1/a subunit interaction could be a common mechanism. To address this 

question, I wished to perform similar immunoprécipitation studies, but found that 

the available a1 antibody (kind gift from Dr M. Futai, Osak University, Japan) 

appeared to cross-react with a4 (Figure 30). I therefore designed a PFK-1 pull­

down assay instead. HPLC-purified a4(C) or synthesised a1(C) were first labelled 

with biotin (Section 2.20), and following confirmation of successful biotinylation 

(Figure 31, panel A), were then incubated with agarose beads to which rabbit 

muscle type PFK-1 was bound (Sigma). After extensive washing with PBST, 

bound proteins were eluted and spotted on nitro-cellulose membrane and 

analysed using avidin a-biotin conjugate. Binding of PFK-1 to both a4(C) and 

a1(C) was evident from this assay (panels C and E). As can be seen from panels 

D and F, this binding was specific, since when an unrelated protein (protein A) 

conjugated to identical agarose beads was used, no significant binding of a4(C) or 

a1(C) was observed. Finally, panel G confirmed there was almost no binding 

between PFK-1 and the avidin-HRP conjugate alone.

5.2.4 Immunolocalisation of a4 and PFK-1 in Human Kidney

The distributions of a4 and PFK-1 in human kidney were compared by 

double label immunohistochemistry, as described in Section 2.23, using the 

antibodies to human a4 (RA2922) (1 in 5000 dilution) and to rabbit muscle type 

PFK-1 (1 in 100 dilution) employed earlier. Following the primary antibody 

reactions, tetramethyl rhodamine isothiocyanate (TRITC)-labelled anti-rabbit or
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Blot with a-a1

Figure 30 Immunoprécipitation
The membrane protein fraction of fresh frozen human kidney was solubilised and 
immunoprecipitated using RA2922 [anti-a4(C)] antiserum or anti-human 81 antibody (+ 
lanes). Western blots were probed with anti-mouse a1 antibody (1 in 500 dilution). - 
indicates negative control where the precipitating antibodies were omitted.
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D E Fe

Figure 31 PFK-1 pull down analysis.
Initially, purified a4(C) peptide {A) or a sample where a4(C) was omitted (as negative 
control, B) were biotinylated and detected with HRP-conjugated avidin, confirming 
successful biotinylation and quenching. Subsequently, agarose bead-bound PFK-1 was 
able to pull down both biotinylated a4(C) (C) and a 1(C) (£), indicating binding. Specificity 
of this interaction was confirmed by replacing PFK-1 beads with protein A beads (D and F) 
or applying avidin to PFK-1 alone (G).
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fluorescein isothiocyanate (FITC)-labelled anti-goat secondary antibodies (Vector 

Laboratories) were then applied at 1:100 dilution. As previously documented 

(Smith et al., 2000), a4 localised to the apical surface of a-IC in the collecting duct 

(Figure 32, the left panel). In contrast, it was found that PFK-1 was extensively 

distributed in all nephron segments, as predicted from its ubiquitous function. 

However, some enrichment was observed in glomeruli and proximal tubules (not 

shown), and collecting duct (middle panel). Merged confocal optical sections (right 

panel) suggested co-localisation of a4 and PFK-1 in a-IC in the cortical collecting 

duct.
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5.2.5 Comparison of the interaction of PFK-1 with a4(C) and the a4(C) 

Mutants

As mentioned earlier in Chapter 1 (Section 1.2.5.1 and Table 2), two 

missense mutations (R807Q or G820R) were previously identified in this a4(C) 

region from two different patients diagnosed with rdRTA (Smith et al., 2000; Stover 

et al., 2002). In order to investigate whether the specific interaction between a4(C) 

and PFK-1 was disrupted or influenced by these a4(C) mutant proteins [a4(C)-G or 

a4(C)-Q], the following assays were carried out.

5.2.5.1 Pull-down Assays

PFK-1 Pull-down Assay

PFK-1 pull-down assay, as described above (Section 5.2.3), was first 

performed using recombined a4(C), a4(G)-G or a4(C)-Q incubated with agarose 

beads bound to rabbit muscle type PFK-1 (Figure 33, +panels). Protein A replaced 

PFK-1 as a control {-panels). Specific binding of PFK-1 to a4(C) was again evident 

from this assay (panels A). However, it was not clear whether or not binding of 

a4(C)-G or a4(C)-Q to PFK-1 is specific. As demonstrated from panels B- and C-, 

both mutant proteins bind to either the agarose beads, or to protein A, or both.

GST Pull-down Assay

Prior to performing the assay, each GST fusion protein [GST-a4(G), GST- 

a4(G)-G, and GST-a4(G)-Q] was expressed (in 1 litre volume) and purified using 

glutathione sepharose beads as previously described (Section 3.2.3). Prior to the 

pull-down assay, small quantities (10 \i\) of the purified fusion proteins (each 

contained a large amount of GST alone as described in Section 3.2.3) were 

analysed by Western blotting using RA2922 antibody (Figure 34, panel A) followed
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Figure 33 PFK-1 pull-down analysis.
Initially, recombinant a4(C), a4(C)-G and a4(C)-Q peptides were successfully biotinylated. 
Subsequently, biotinylated a4(C) was able to be pulled down by agarose bead-bound 
PFK-1 [panel A+), but not by protein A beads {panel A-) as observed previously. However, 
both biotinylated mutants showed positive to both incubating with the bead-bound PFK-1 
{panel B and C, +), and bead-bound protein A {panel B and C, -), indicating existence of 
nonspecific binding of the mutants, to either protein A or to the agarose beads, or to both.
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by densitometry analysis (Figure 34, panel B) to quantify the level of fusion 

proteins. The percentage densities obtained from the assay for GST-a4(C), GST- 

a4(C)-G and GST-a4(C)-Q, are 17.25, 11.8 and 11.8, respectively. From these 

data, volumes equivalent to a designated density (3500) of each fusion protein 

were calculated (Table 18) and used in the pull-down assay. Briefly, human kidney 

cytosolic protein fraction was precleaned with GST-bound sepharose beads 

followed by incubation with each of the bead-bound fusion protein. GST, which 

was produced in parallel, replaced the GST fusion proteins as a control. After 

extensive washing with PBS plus 0.15% Tween 20, bound proteins were eluted 

and the supernatant was subjected to 12% SDS-PAGE and Western blotted using 

a-PFK-1 antibody (1:1000 dilution). Binding of PFK-1 to a4(G), a4(C)-G, and 

a4(C)-Q was evident from this assay (Figure 34, lanes 1-3). In contrast, no binding 

of PFK-1 to GST alone was detected (lane 4), confirming the specificity of the 

interaction.

Samples (10 \i\) Density (%) Volume of sample
GST-a4(C) 17.25 202 III (= 3500 density)
GST-a4(C)-G 11.8 296 III (= 3500 density)
GST-a4(C)-Q 11.8 296 III (= 3500 density)

Table 18 Densitometry analysis

5.2.5.2 Binding Affinity Studies

Having identified that both mutants also interact with PFK-1 from the pull­

down assay, I then asked whether there are any differences, in terms of binding 

affinity, between the binding of wild type and mutant a4(C) to PFK-1. To address
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Figure 34 GST pull down analysis.
GST-a4(C), GST-a4(C)-G and GST-a4(C)-Q were expressed, purified, analysed by 
Western blotting using RA2922 antibody (panel A) and quantified by densitometry (panel 
B) prior to be used in the pull-down assay. Subsequently, all glutathione sepharose bead- 
bound GST fusion proteins were able to pull down PFK-1 from kidney cytosol (panel C, 
lanes 1-3), indicating binding. Specificity of the interactions was confirmed by replacing 
the GST fusion proteins with GST (panel C, lane 4).
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this question, SPR analysis was carried out using the BIAcore system as 

described in Section 2.22. In this assay, the rabbit liver-type PFK-1 protein 

(Sigma) (20 pg/ml in 10 mM NaAc, pH 5.0) was used as a ligand to be immobilised 

to a sensor chip. The synthetic peptides [a4(C), a4(C)-G and a4(C)-Q] (CovalAB) 

were used as analytes to be run over the surface of the chip.

BIAcore measurements are expressed in resonance units (RU) proportional 

to the concentration of a protein bound to the chip/or the ligand. The SPR signal 

generated from the immobilised PFK-1 was approximately 330 RU. Control flow 

cells were activated and blocked in the absence of PFK-1. Binding of the peptides 

to PFK-1 was evaluated over a range of peptide concentrations (7.5-250 pM) in 

the running buffer under a continuous flow of 10 pl/min at 25°C. Figure 35-37 

displays sensorgrams of the wide type or mutant a4(C) binding to PFK-1 (panels 

A) as well as the relationships between the relative binding response (signals from 

the control were subtracted) and the peptide’s concentration (0) (panels B). From 

these preliminary results, it can be seen that all of the three peptides showed 

binding with PFK-1, but the sensorgrams revealed a markedly lower response 

from the binding of a4(C)-Q to PFK-1 compared with the other two a4(G) peptides. 

In addition, the intensity of the RU signals increased with the peptide concentration 

within the tested range for both a4(G) and a4(G)-G. However, this behaviour has 

not been shown for a4(G)-Q. Furthermore, The Kd values obtained using the 

programme Graf it for a4(G)/PFK-1 and a4(G)-G/PFK-1 are 24.4 ± 4.5 pM and 49.9 

± 9.6 pM (p < 0.05 obtained from the T-test), respectively. The data revealed that 

the affinity of PFK-1 to a4(G)-G mutant is ~2-fold lower than that of the a4(G) wild 

type peptide.

170



40

3 35

30
0>
tf) 25coOL 20
(0Q) 15
OC
Q) 10
0̂

5

0

-50 -5

B

--------7.5 uM

12.5 uM

25 uM

50 uM

--------75 uM

100 uM

125 uM

50 150 250 350

Time (s)

30

20

10

80 100 120 140
Concentration (pM)

Figure 35 Surface plasmon resonance assay.
Binding of a4(C) to PFK-1 indicated by analysis of SPR. Synthetic a4(C) at concentrations 
of 7.5, 12.5, 25, 50, 75, 100 or 125 |iM in PBS containing 0.005% surfactant P20 were 
injected (10 (il/min) over immobilised PFK-1 on the sensorchip CM-5. A, Sensorgrams of 
binding of a4(C) and PFK-1. B, Relationship between the relative response (RU) and the 
peptide concentration.
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Figure 36 Surface plasmon resonance assay.
Binding of a4(C)-G to PFK-1 indicated by analysis of SPR. Synthetic a4(C)-G at 
concentrations of 15, 25, 50, 100, 150, 200 or 250 p.M in PBS containing 0.005% 
surfactant P20 were injected (10 )Lil/min) over immobilised PFK-1 on the sensorchip CM-5. 
A, Sensorgrams of binding of a4(C)-G and PFK-1. B, Relationship between the relative 
response (RU) and the peptide concentration.
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Figure 37 Surface plasmon resonance assay.
Binding of a4(C)-Q to PFK-1 indicated by analysis of SPR. Synthetic a4(C)-Q at 
concentrations of 15, 25, 50, 100, 150, 200 or 250 jxM in PBS containing 0.005% 
surfactant P20 were injected (10 fil/min) over immobilised PFK-1 on the sensorchip CM-5. 
A, Sensorgrams of binding of a4(C)-Q and PFK-1. B, Relationship between the relative 
response (RU) and the peptide concentration.
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5.3 Discussion

The a subunit of the proton pump is deemed crucial for the coupling of ATP 

hydrolysis and proton transport. Physical interactions between the V-ATPase 

subunits, or between subunits and other proteins, have been variously reported as 

discussed in Sections 1.2 and 1.3.6. Inter-molecular interactions among different 

subunits are more likely to provide a structural support for the proton pump, 

whereas interactions with other proteins might provide insights into V-ATPase 

assembly, transport, targeting, or regulation.

This study presents multiple lines of evidence that identify the glycolytic 

enzyme PFK-1 as a novel binding partner for the C-terminus of the pump's a 

subunit. I initially focused on the a4 subunit because in contrast to its intracellular 

counterpart a1, it has a differently targeted distribution to the apical surface of 

polarised cells in the kidney and an essential role in renal acid-base homeostasis. 

I confirmed the initial phage peptide interaction by proceeding to in vitro binding 

studies of a4(C) with intact PFK-1, and also demonstrated that a4 and PFK-1 can 

be co-precipitated from human kidney membranes. Lastly, immunolocalisation in 

human kidney suggests some enrichment of PFK-1 at the same sites as high 

intensity a4 immunoreactivity in acid secreting cells of the distal nephron.

It was subsequently shown that PFK-1 also binds to the ubiquitous a1 

subunit's C-terminus. However, the available polyclonal anti-al antibody 

(Toyomura et al., 2000) appeared to recognise both the a1 and a4 subunits, 

meaning it could not be used to make a meaningful interpretation of immunoblots. 

Instead I used a specific in vitro assay to demonstrate the interaction. Of the 45 

amino acids in the a subunit's C-terminus, the first 23 are identical in the a1 and a4 

paralogues, with only 59% identity thereafter, and it is therefore likely that this 

region contains the binding domain.
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The above results strongly suggest that there is a direct link between proton 

transport and glycolysis, and implies that the energy source for pump function may 

be glycolytic rather than mitochondrial. Lu et al. (Lu et al., 2001; Lu et al., 2003) 

have reported interactions at the protein level between aldolase and the 

ubiquitously expressed E subunit as well as with the N-terminal domain of a4 of 

the V-ATPase, again supporting a direct coupling between the proton pump and 

glycolysis. Aldolase is the next enzyme in the glycolytic pathway which, following 

the action of PFK-1, cleaves fructose 1,6-bisphosphate. Taken together with 

results obtained from this study, it is probable that the many pump and glycolytic 

components form a 'metabolon' to maximize the efficiency of energy provision. 

Whether other glycolytic enzymes, such as hexokinase, also physically interact 

with V-ATPase components, is unknown.

In the glycolytic pathway, PFK-1 catalyses the phosphorylation of fructose 6- 

phosphate by Mg-ATP to form fructose 1,6-bisphosphate and Mg-ADP. This 

reaction is the rate-limiting step in glycolysis, which is therefore critically 

dependent on the level of activity of PFK-1. This in turn is allosterically controlled 

both by the ratio of ATP to AMP, and by several other metabolites including citrate 

and fructose-2,6-bisphosphate (Dunaway, 1983). Mammalian PFKs have yet to be 

crystallised, but comparison with the bacterial form suggests that the binding 

region I have identified for a4(C) is probably distant from the described active sites 

of substrate binding and allosteric regulation, which involve residues R48, R97, 

R433, R481 and S541 among others (Kemp et al., 1987; Kemp and Gunasekera, 

2002; Li et al., 1999; Zheng and Kemp, 1994). This might imply that the binding of 

a4(C) to PFK-1 should not directly affect its kinase function. Future studies will be 

required to address this issue.
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The enzymatically active form of PFK-1 may be a tetramer or high order 

oligomer with a subunit molecular mass of approximately 85 kDa in eukaryotes 

(Uyeda, 1979). In humans, isozymes of PFK-1 have been grouped as muscle type 

(M-PFK-1), liver type (L-PFK-1), and platelet type (P-PFK-1) (Vora, 1982). All 

three types have been detected in human kidney (Dunaway, 1983; Nakajima et al.,

1990). Rabbit M-PFK-1, to which the only commercially available antibody was 

raised, shares a sequence identity of about 96% with human M-PFK-1. The 

sequence identity between rabbit M-PFK-1 and human L-PFK-1 is not as high, 

about 69%, but comparative gene structural analysis has revealed a high degree 

of similarity, from which it is implied that this will also be true at the functional level 

(Elson et al., 1990). However, the potential for differences between the PFK-1 

homologues means that the relative power of the available antibody to interact 

with the V-ATPase-PFK-1 complex may be less than optimal.

The involvement of glycolytic enzymes with the proton pump is of especial 

interest in the 1C, which has been labelled the 'mitochondrion-rich' cell type in the 

nephron (Brown and Breton, 1996). Other energy-dependent transport functions of 

this cell are likely to depend on the mitochondrial supply of ATP, but in the case of 

the apical V-ATPase that is responsible for urinary acidification, I propose the 

alternative.

Several other lines of evidence support this hypothesis. Firstly, functional

assessment of proton transport in the isolated turtle urinary bladder showed that it

could be driven by the energy from both aerobic and anaerobic glycolysis

(Beauwens and Al-Awqati, 1976; Steinmetz et al., 1981). Secondly, an

investigation of the effect of glucose on the reversible assembly of the Vi and Vo

domains of the pump complex in yeast (Parra and Kane, 1998) suggested

coupling between V-ATPase activity and glycolysis. Interestingly, accumulation of
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glucose-6-phosphate was insufficient to maintain or induce this assembly, 

suggesting that further glucose metabolism is required. In addition, the signalling 

involved in V-ATPase assembly did not appear to involve the Ras-cyclic AMP 

pathway, Snf1p, protein kinase C, or the stress response protein Rts1p, which are 

major proteins for glucose signalling in yeast (Parra and Kane, 1998). This study 

suggested that the transient cytosolic pH drop resulting from the initiation of 

glycolysis could provide a signal for activation of V-ATPase by triggering the 

glucose-induced assembly of the Vi domain and Vo domains. Thus it can be 

speculated that the activity of PFK-1 may have a role as an indirect regulator of 

the proton pump.

The a subunit was initially described as the 'large accessory' subunit of the V- 

ATPase, and its presence in the kidney was once disputed (Gillespie et al., 1991; 

Gluck and Caldwell, 1987). In recent years it has become evident from the study of 

human diseases that its presence is essential for normal pump function at the cell 

surface of renal IGs and osteoclasts at least (Frattini et al., 2000; Kornak et al., 

2000; Smith et al., 2000). Through the use of different solutions in the co- 

immunoprecipitation experiments, I have shown that the detection of this subunit is 

critically dependent on the detergent employed in disrupting the cell. In particular, 

unsuccessful detection following a4 co-immunoprecipitation with PFK-1 when 

using buffers containing CHAPS suggests that this interaction, at least, is sensitive 

to this detergent. In a similar way, the differences in subunit composition reported 

for V-ATPases in the kidney may in fact have related to methodological differences 

in tissue preparation.

Having identified the specific interaction between a4(C) and PFK-1, I then

investigated whether or not the interaction is abolished or interrupted by either of

the mutations (R807Q or G820R) that are located in this domain in order to reveal
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potential disease causing mechanisms. The GST pull-down assay showed that 

both of the mutants can interact with PFK-1. However, it is clear that this type of 

assay is not able to probe the roles of the mutations in terms of affinity. To address 

this question, BIAcore analysis was performed. Ideally, a4(C) should be used as 

the ligand (i.e. to be immobilised onto the chip) rather than the analyte, due to its 

low molecular weight (approximately 5 kDa). However, PFK-1 had to be used as 

the ligand due to its limited available quantity. Thus, a4(C) had to be used as the 

analyte rather than the ligand, although the sensitivity of the assay would be 

reduced if done in this way. The results showed a 2-fold lower in binding affinity for 

a4(C)-G/PFK-1 interaction compared to the a4(C)/PFK-1 interaction, suggesting a 

possible effect on the stability of the 'metabolon' formed by the V-ATPase subunits 

and glycolytic components. However, this is only a preliminary result which needs 

to be further confirmed by repeated experiments and/or using alternative 

techniques, once PFK-1 is available, in order to draw a conclusion.

Finally, topological studies of Vphip, employing cysteine mutagenesis and 

chemical labeling, have led to a model for the a subunit in the yeast vacuole that 

contains 9 transmembrane helices. In this model, the amino-terminal domain lies 

on the cytoplasmic side of the membrane and the carboxyl-terminus on the 

lumenal side of the vacuole (Leng et al., 1999). However, data suggesting 6 

transmembrane domains, with cytoplasmic orientation of both N-and C-termini, 

have also been reported in yeast and Dictyostelium (Clarke et al., 2002; 

Urbanowski and Piper, 1999). In the absence of crystallographic or other structural 

information, it has not been clear whether in the case of a4 the C-terminal tail 

would be found below the apical cell membrane in IGs, or protruding into the 

urinary space. The finding of the interaction between PFK-1 and a4(C) provides 

new evidence for an intracellular location of a4(C).
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CHAPTER 6 

CONCLUSION AND GENERAL DISCUSSION

6.1 Conclusion

In this dissertation, I have used protein engineering in combination with 

biochemical and biophysical methods to characterise the human a4 subunit of the 

V-ATPase, focusing on its potential protein-protein interactions. Previous work 

from our laboratory has focused on linkage of the human a4 subunit locus to 

rdRTA, and the identification of the coding region of the gene as well as the 

localisation of the protein in kidney (Karet et al., 1999a; Smith et al., 2000). 

Information concerning interactions involving the a4 protein is scarce. The aim of 

this project was to identify binding partner(s) of the human a4 subunit which may 

provide further understanding of the biological functions of this subunit and 

regulation of V-ATPase activity. In the present work, a4(N), a4(Loop2) and a4(C) 

were chosen as the engineering targets for in vitro expression attempts. Using a 

bacterial expression system, I have successfully expressed both the a4(Loop2) 

and a4(C) domains as His- and GST-tagged fusion proteins respectively, although 

the yield of the GST-a4(C) was at a rather low level. The GST tag in the GST- 

a4(C) fusion protein was subsequently removed followed by further purification of 

a4(G) using HPLG. GD spectrometry revealed that a4(Loop2) and a4(G) contain 

mainly p-sheets and a-helix secondary structural elements, respectively. However, 

a4(N) failed to be expressed in both bacterial and Drosophila S2 cell systems.

Through screening a random peptide (7-mer) M l3 phage display library 

using a4(G) as a target protein, I identified a potential binding peptide, SWLELRP. 

Phage ELISA was then carried out to analyse specificity of the a4(G)/peptide 

interaction. Database searches revealed PFK-1 as a candidate protein for
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interacting with a4(C). Assays, including in vitro pull-down, co- 

immunoprecipitation, immunohistochemistry and SPR, were subsequently 

performed to characterise the a4(C)/PFK-1 protein-protein interaction.

From the results presented, five conclusions can be drawn for the 

a4(C)/SWLELRP and a4(C)/PFK-1 interactions:

1) The binding of SWLELRP peptide to a4(C) is specific, a more than 3 times 

higher signal than background was observed in the ELISA assay.

Comparative BLAST analysis revealed an almost complete match of the 

peptide sequence, SWLELRP, to the enzyme PFK-1, which is a key participant 

in the glycolytic pathway. This matched region within PFK-1 is highly 

conserved among mammalian PFK-1 orthologues and paralogues.

2) Several lines of evidence confirmed interaction between a4(C) and the intact 

PFK-1 protein. Firstly, biotin labelled a4(C) can be pulled down by bead-bound 

PFK-1. Secondly, bead-bound GST-a4(C) is also able to pull down PFK-1 from 

human kidney cytosol. Thirdly, intact a4 can be co-immunoprecipitated with 

PFK-1 from human kidney membrane. Finally, a4 and PFK-1 are colocalised at 

the apical surface of the a-ICs in human kidney.

3) Evidence was also presented to confirm an interaction between PFK-1 and 

human a1 (through the C-terminus of the a1), a ubiquitously expressed 

paralogue of the human a subunit of the V-ATPase. This finding suggests a 

general property of protein-protein interaction between the human a subunit 

and PFK-1.

Finding of the a subunit/PFK-1 interaction indicates a direct link between V-

ATPases and glycolysis, via the C-terminal region of the pump's a subunit.

This link through the a/PFK-1 interaction could be triggered by a systematic pH

drop and subsequently leads to the activation of the V-ATPase for proton
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pumping in expenditure of ATP generated from the glycolysis. Thus provides a 

potential novel regulatory mechanism between V-ATPase functions and energy 

supply. However, further work will be needed to confirm this hypothesis.

4) Further characterisation of this protein-protein interaction was carried out to 

investigate whether the two a4(C) mutants [a4(C)-G and a4(C)-Q] disrupt the 

a4(C)/PFK-1 interaction. As mentioned earlier, the two mutations were 

identified in patients diagnosed with rdRTA (Smith et al., 2000; Stover et al., 

2002). Through a GST pull-down assay, it was seen that both mutants, like the 

wild type a4(C), were also able to interact with PFK-1.

To examine this in more detail, SPR analysis was performed using the 

BIAcore system. The preliminary data obtained from this assay showed an 

approximately 2-fold difference, in terms of Kd, between the wild-type a4(C) 

and the mutant a4(C)-G. However, this result needs to be further confirmed.

5) The cellular location of the C-terminal tail of the a subunit has been disputed. 

As mentioned earlier, data suggesting an extracellular location (Leng et al., 

1999) and a cytoplasmic orientation of the C-termini (Clarke et al., 2002; 

Urbanowski and Piper, 1999) have been reported. In the absence of 

crystallographic or other structural information, it is not clear whether in the 

case of a4 the C-terminal tail would be found below the apical cell membrane 

in ICs, or found protruding into the urinary space. The finding of an interaction 

between PFK-1 and a4(C) provides new evidence for an intracellular location 

of a4(C).

6.2 General Discussion

Protein-protein interactions are operative at almost every level of cell

function: in the structure of intracellular organelles; the transport machinery across
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the various membranes; packaging of chromatin; muscle contraction; signal 

transduction; and regulation of gene expression etc. Over decades of study, much 

effort has been devoted to uncover the regulation of V-ATPase activity in different 

membranes of a wide variety of organelles, tissues and organisms. Increasing 

evidence indicates that binding of V-ATPase subunits to other proteins, other than 

the component elements of this enzyme, is more than likely to be involved in 

regulatory events as mentioned earlier in Section 1.2.2. Therefore, in order to 

understand better how the activity of the V-ATPase is regulated, it is necessary to 

identify and study those proteins that bind to the V-ATPase subunits but are not 

elements of the core structure of this enzyme.

However, the majority of studies of the mammalian a4 subunit of the V- 

ATPase, to date, have focused on the gene structure and cellular localisation, so 

little is known about its protein-protein interactions. As noted from the yeast 

orthologue Vphip, the N- and C-terminal domains are likely to contain signals in 

controlling proton translocation, targeting, assembly and regulation of V-ATPase 

activity (Kawasaki-Nishi et al., 2001a; Kawasaki-Nishi et al., 2001c; Leng et al., 

1998; Leng et al., 1996; Manolson et al., 1992). However, molecular mechanisms 

of these events have not yet been unravelled. In this study, I have chosen to seek 

binding partners for a4 in order to address its potential role, on a molecular basis, 

in the V-ATPase complex.

6.2.1 Expression of a4(N), a4(Loop2) and a4(C)

I chose a4(N), a4(Loop2) and a4(C) domains, rather than the intact a4

protein, as the engineering targets for the following reasons. Firstly, intact a4 is a

relative large integrated membrane protein containing multiple putative TM helices.

Although overexpression of full-length integral membrane proteins is highly

182



desirable since their TM regions often contain important structural information 

directing their folding, oligomerisation or subcellular sorting etc, high-level 

expression of them in E. coli remains a difficult task due to toxic effects exerted by 

the hydrophobic protein domains on host cells (Cosson and Bonifacino, 1992; 

Lemmon and Engelman, 1994; Shaw and Mi roux, 2003). Therefore, bacterial 

expression of membrane proteins has frequently been restricted to their soluble 

domains. Indeed, my attempts to express and purify the intact human a4 protein in 

BL21 cells were not successful in the present work. Secondly, both N- and C- 

terminal domains of the yeast a subunit orthologue have been implicated in the 

regulation of V-ATPase activity. Thirdly, the N-terminal domain of the yeast a 

subunit was previously found to interact with subunits A and H of V-ATPase, which 

is likely to provide structural support as well as coupling the ATP hydrolysis and 

proton translocation of the V-ATPase (Kawasaki-Nishi et al., 2001a). Finally, the 

2"^ loop is the most conserved region, in terms of amino acid sequence, among 

the loops of human a subunit paralogues.

A bacterial E. coli expression system was chosen as the first choice to

produce the three domains for several reasons. Firstly, the cells are easy and

quick to grow to high cell densities which could possibly allow for large-scale

production of proteins. a4(Loop2) was expressed at a rather high level in this

manner. Secondly, there are many commercial and non-commercial expression

vectors available with different N- and C-terminal tags. Also many different strains

exist which are optimised for special applications as well as a number of well

developed transformation protocols. Finally, the very well understood molecular

genetics of bacteria permit the expression of recombinant proteins to be tightly

controlled. This is important because it could possibly allow for E. coli to be used

as a host for expressing proteins that are toxic, or inhibit cell growth, by using
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promoters whose expression is inducible. However, many eukaryotic proteins still 

cannot be successfully expressed to a high level or with a properly folded form in 

bacterial cells even under controlled expression. In the case of a4(C), although it 

was successfully expressed as a soluble and functional form, the expression level 

was rather low. This might be the result of either the tocxicity of this protein to 

BL21 cells and/or the sensitivity of this protein to proteinase (Gillespie et al., 1991; 

Gluck and Caldwell, 1987). Nevertheless, the E. coli expression system has 

several disadvantages, the main one being the lack of machinery for post- 

translational modification. This makes E. coli cells an inadequate expression 

system for many eukaryotic proteins; especially for those that require post- 

translational modification for folding and functionality. In the case of a4(Loop2) 

expression, although the yield of the a4(Loop2) was very high, it was initially 

formed as inclusion bodies which can often be very difficult, if not impossible, to 

refold. On the other hand, although a4(N) was expressed in a soluble form with a 

GST tag, it was not properly folded. Despite it being disappointing not to obtain a 

soluble protein with structural elements, it reinforces the importance of checking 

the folding situation of an overexpressed protein before using it in further studies.

In addition to a bacterial expression system, other systems including yeast,

insect, and mammalian, are also widely used for protein expression. These share

the property of post-translational modification machinery, which is necessary for

the expression of many eukaryotic proteins, especially those that have failed to be

expressed in bacterial systems. Both yeast and insect cell expression systems can

perform similar post-translational modifications to those occurring in mammalian

cells. Also, both systems are suitable for the relatively large-scale production of

proteins. However, they can be challenging from the point of view of the

transformation and transfection processes. For example, attempts to express
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a4(N) using Drosophila S2 cells failed to produce detectable a4(N). One possible 

reason could be due to low levels of expression caused by low transfection 

efficiency. If this is the case, the efficiency could possibly be increased by using an 

alternative selection vector, which would in turn increase the level of protein 

expression. Alternatively, the a4(N) protein may have been produced in an 

unfolded (or misfolded) form, which would subsequently be degraded by the ER 

quality control in S2 cells. If this was the case, using an alternative expression 

system(s), such as mammalian cells, might have to be the choice in future studies, 

although the expression level in such systems is generally quite low.

6.2.2 Identification of Interacting Ligands

Both the expressed and purified a4(C) and a4(Loop2) were used as target 

proteins to screen random peptide M13 phage display libraries for potential 

binding partners. Through screening of a 7-mer random peptide phage display 

library with a4(C), a potential binding peptide sequence, SWLELRP, was identified 

and the specificity of the a4(C)/peptide interaction was further confirmed by a 

phage ELISA analysis. This peptide sequence almost completely matched a linear 

stretch of amino acids at C-terminus of PFK-1, and the matched sequence is 

highly conserved among mammalian PFK-1 orthologues and paralogues. This 

finding suggests that PFK-1 is a potential binding partner for a4(C). However, not 

all phage display library screening produced such a successful output - as seen in 

the assays using a4(Loop2) as a target protein to screen both 7- and 12-mer 

random peptide phage display libraries. The library screens identified a consensus 

interacting motif K(LA/)WVIPQ in approximately 75% of cases and this 

a4(Loop2)/peptide interaction was further confirmed by phage ELISA analysis. 

However, database searches did not reveal any protein containing this motif that
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had apparent physiological relevance to the V-ATPase. There could be a number 

of reasons for identification of a binding sequence, but not an actual protein of 

interest as described in Section 4.3. The main possible reason is that the identified 

peptide sequence is only formed in a binding ligand with a 3D structure. If this is 

the case, an alternative approach, in future work, is either to use alternative phage 

display libraries containing structured peptides, or to use alternative strategies, 

such as Y2H system. The latter usually combines libraries with larger insert size 

and is especially good for searching binding ligands that require post-translational 

modification for interaction.

The inability to obtain folded a4(N) prevented the use of a phage display

strategy. Instead, a Y2H based CytoTrap two-hybrid system was employed to

screen a human testis cDNA library (contains insert size greater than 0.4 kb) for

binding ligand(s) of a4(N). In addition, as an alternative, a4(Loop2) was also used

as a bait to screen the same library. Through the screens, several

hypothetical/unknown proteins were identified as potential binding ligands, one for

a4(Loop2) and two for a4(N), as described in Sections 4.2.2.3 and 4.2.2.4. In

February 2001, the sequence of the human genome was reported with over 90%

coverage, revealing an estimated 31,000 proteins, many of which, however, are of

unknown function (Lander et al., 2001; Venter et al., 2001). In order to determine

the biological functions of these proteins, much effort has now been devoted to

identifying protein-protein interactions using various combinational biological

methods. Therefore, more information regarding these identified unknown proteins

may become available in the future. If this is the case, decisions for further

characterisations of the interactions between these potential ligands and a4(N) [or

a4(Loop2)] can be made accordingly. Nevertheless, in addition to the unknown

proteins a potential binding candidate of a4(N), the proteasome (p subunit), was
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also identified through the Y2H library screen. The proteasome is a protein 

degradation machine which is a large protein complex (also called 26S 

proteasome) formed by a 20S core chamber and two 19S caps. The 20S complex, 

which is the heart of the proteasome, does the job of protein degradation and is 

composed of 4 rings. Each of the 4 rings is composed of a and p subunits. When 

a protein is misfolded, it is guided into the 20S core chamber where the peptide 

bonds of the protein are cleaved every 8-9 amino acids. In addition to degrading 

misfolded proteins, proteasomes are also to be involved in breaking down proteins 

which have normal structures but are retained as unassembled. An example of 

this came from studies of the degradative pathway of non-assembled Vph1p, the 

yeast orthologue of the a subunit of V-ATPase (Hill and Cooper, 2000). Whether or 

not the binding of a4(N) to proteasome is due to its misfolding or other reasons 

remained unclear.

Finally, screening different libraries associated with the Y2H system could 

possibly identify additional protein(s) of interest. Initially, there were several cDNA 

libraries available for the CytoTrap two-hybrid system. The human testis cDNA 

library was chosen in this study mainly due to three reasons. Firstly, there was no 

mammalian kidney cDNA library suitable for this system. Secondly, the human a4 

protein is also expressed in testis. Finally, testis cDNA library is supposed to 

contain most of transcripts compared to those from other tissues. However, a 

mouse kidney cDNA library, which is suitable to be used with the CytoTrap two- 

hybrid system, has very recently become available and this provides an alternative 

material for identification additional binding partners for both a4(N) and a4(Loop2) 

in the future.
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6.2.3 Characterisation of a4/PFK-1 Protein-protein Interaction

Through the phage display assay, PFK-1 was identified as a potential 

binding partner for a4, via its C-terminal soluble tail. To test whether a4(C) indeed 

interacts with PFK-1 at a protein level, multiple assays including in vitro pull-down, 

co-immunoprecipitation and immunofluorescence microscopy were carried out and 

from this several lines of evidence were presented to demonstrate the a4(C)/PFK- 

1 protein-protein interaction. Association between these two proteins indicates a 

direct link between the V-ATPase and the ATP-generating glycolytic pathway, via 

the a subunit, and suggests a novel regulation mechanism between energy supply 

and V-ATPase function.

Having identified a specific interaction between a4(C) and PFK-1, the next

question was what are the influences of the mutations (R807Q and G820R) within

the a4(C) region identified from patients with rdRTA, on the binding of the a4(C) to

PFK-1. In other words, do these mutations cause rdRTA through abolishing or

altering the a4/PFK-1 interaction? To address this question, I next carried out a

GST pull-down assay. Like the wild-type a4(C), a4(C) domains containing either

R807Q or G820R mutations fused with GST bound sepharose beads did pull

down PFK-1 from human kidney cytosol. This suggests, at least, that both mutants

do not disrupt the a4(G)/PFK-1 interaction completely. Therefore, I further asked if

binding affinity was affected by the mutations. There are several methods,

including stopped-flow, analytic centrifugation, ITC, fluorescence titration and

SPR, which are commonly used for binding affinity analysis of a protein-protein

interaction. However, the number of applications which could be used in the

present study was restricted by either the limited amount of PFK-1 protein or the

existence of tryptophan residues in both PFK-1 and a4(C). The restricted quantity

of PFK-1 prevented the use of techniques such as stopped-flow, analytic
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centrifugation and ITC, whereas the latter limits the use of fluorescent titration. The 

SPR based BIAcore system was, therefore, the only method which could be used 

at present.

To perform the assay, PFK-1 had to be used as a ligand (to be immobilised 

on the BIAcore chip), rather then an analyte (to be run over the chip surface), 

again due to insufficient quantity. This is not the favoured way to run the assay, as 

a4(C) is a relatively small molecule (~ 5 kDa). Performing the assay in this way 

would normally reduce its sensitivity. The preliminary results obtained through the 

BIAcore analysis showed that mutation G820R in a4(C) [a4(C)-G] can cause 

approximately 2-fold decrease of the PFK-1 binding affinity compared to the wild 

type a4(C). However, if there was a sufficient quantity of PFK-1, BIAcore analysis 

could be performed more optimally, i.e. the a4(C) was immobilised to the chip as 

the ligand and PFK-1 was run over the a4(C) as an analyte. In this way, the 

sensitivity of the analysis might be much increased, which in turn might reduce 

potential errors.

6.2.4 Future Studies

Further Characterisation of the a4/PFK-1 Interaction

First of all, efforts will need to be made to produce sufficient quantities of 

PFK-1 protein for example by purification from certain tissue extracts. This would 

allow me to carry out several further studies regarding the a4/PFK-1 interaction as 

follows.

Firstly, studies of regulation of V-ATPase activity, in yeast, have shown that

extracellular glucose concentrations regulate V-ATPase activity in vivo by

regulating the extent of the association between Vi and Vo domains (Graf et al.,

1996; Kane, 1995; Sumner et al., 1995; Wieczorek et al., 2000). Therefore, further
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characterisation of the direct coupling between glucose metabolism and V-ATPase 

activity through a/PFK-1 interaction could be performed if a PFK-1 deficient cell 

line was available. If this was the case, the a/PFK-1 interaction might regulate V- 

ATPase activity by controlling disassembly/reassembly of Vi and Vo domains - a 

potential mechanism which has been suggested for regulating V-ATPase activity 

in vivo (Nakamura et al., 1997; Puopolo et al., 1992b; Zhang et al., 1992).

Secondly, as described in Section 5.3, it was assumed that binding of a4 to 

PFK-1 would not affect its enzyme catalytic activities. However, in the absence of 

3D structural information for eukaryotic PFK-1, it is hard to draw a precise 

conclusion. One way to elucidate this aspect would be to perform some enzyme 

activity assays to see whether binding of a4(C) to PFK-1 affects binding of fructose 

6-phosphate which is the substrate of PFK-1, or vice versa. This would provide 

more information to understand better the mechanism of the coupling of glycolysis 

directly to V-ATPase activity through the a4/PFK-1 interaction.

Thirdly, more measurements of binding affinity and kinetic analysis of the 

interaction between the wild-type or mutant a4(C) and PFK-1 will be performed 

using SPR and/or other methods mentioned above.

Finally, attempts would be made to grow crystals of the a4(C)/PFK-1 

complex in order to gain 3D structural information of this complex. Knowledge of 

this can provide information on how they interact and why a particular mutation 

causes disease.

Further Characterisation of the a4(N) and a4(Loop2) Domains

As mentioned above, additional screening of the mouse kidney cDNA

library with a4(Loop2) will be carried out for potential binding ligands. In addition,

a technique combining in vitro pull-down assay and mass spectrometry has

recently been established locally, which has opened an alternative method for
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identification of binding partners of a4(Loop2). In this technique, the His-a4(Loop2) 

expressed can be captured onto Ni-NTA agarose resin and incubated with human 

kidney crude protein fraction, followed by SDS-PAGE analysis. Unique visible 

band(s) on the gel compared to a control could possibly represent potential 

binding ligand(s) which can be characterised by mass spectrometry.

Further characterisation of any a4(N) protein-protein interactions will be 

carried out if a potential a4(N)-binding partner is identified in an additional Y2H 

screen. In addition to performing immunoprécipitation and immunohistochemistry 

assays, this will involve attempts to express a4(N) in systems other than bacteria 

to produce a4(N) suitable for in vitro pull-down analysis. If the expression level is 

relatively high, i.e. if there is an adequate quantity of a4(N), structural analysis will 

be carried out to gain more information about functional domains and motifs 

contained in this part of the a subunit protein. This kind of information will not just 

provide evidence to support any identified interactions, but may also be useful in 

predicting other potential binding partners of a4(N).

Celt Bioloav and Model Svstems

It was assumed that the sequence divergence between the a subunit

paralogues of V-ATPase may contribute to the differential targeting as well as to

the other regulatory properties of V-ATPase (Kawasaki-Nishi et al., 2001c; Nishi

and Forgac, 2000; Toyomura et al., 2000). Studies using chimeras constructed

with either N- and C-terminal domains of the yeast a subunits (Vphip and Stvlp)

have indeed demonstrated that the differential targeting and proton translocating

signals are likely to be embedded in the N- and 0- terminus, respectively

(Kawasaki-Nishi et al., 2001c; Manolson et al., 1994). It is interesting to see

whether this is true in the acid-secreting cells in mammalian kidney. Unfortunately,

no cell lines derived from kidney epithelial cells have, so far, been identified to be
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able to investigate targeting of the a4 subunit onto the cell surface. However, if a 

suitable cell line becomes available in the future, similar studies could be carried 

out between a4 and its ubiquitously expressed counterpart a1 subunit.

In addition to cell lines, model systems based on organisms would be good 

for the functional studies of a4. The mouse is closely related to humans: most 

human genes have functional mouse counterparts and the genome is organised in 

a very similar manner. Indeed, both mouse and human contain four paralogues of 

the a subunit of the V-ATPase. So mouse models can be established to see 

whether the a4-encoding gene (Atp6v0a4) knockout mice show similar phenotypes 

as seen in those ATP6V0A4-\mked patients and also to investigate the molecular 

mechanisms underlying this disease development as well as the identification of 

targeting and regulatory pathways.

Finally, a coated vesicle Cl' channel was proposed to function in dissipating 

the membrane potential generated by V-ATPase in coated vesicles (Mulberg et al.,

1991). When the Cl" channel activity decreased by treatment with a phosphatase, 

a parallel decrease of vesicular acidification by the V-ATPase was also observed. 

The decrease in Cl" conductance and ATP-dependent acidification can be 

reversed by treatment with PKA and MgATP. These results indicate that 

modulation of the Cl" channel activity by PKA affects vesicular acidification by V- 

ATPase. If this regulation mechanism does exist for the a4-containing V-ATPase 

in the kidney, the possibility of the existence of a chloride channel at the apical 

surface of a-ICs can be proposed. If a suitable cell line or organism model 

becomes available, it would be interesting to test this hypothesis. If this is the 

case, it will provide new insight to the structure of the a-IC in human kidney.
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APPENDIX

A.1 General Buffers, Bacterial Growth Media and Antibiotic Solutions

A.1.1 General Buffers

The following buffers were made up in deionised water (dH20), sterilised by

autoclaving and stored at RT.

10x Phosphate-buffered saline (PBS) (pH 7.4)

20 mM KH2 PO4 , 100 mM Na2 HP0 4 , 1.37 M NaCI, 27 mM KCI

PBST

1x PBS, 0.05% polyoxyethylenesorbitan monolaurate (Tween 20), unless 

otherwise stated.

5xTBE

0.45 M Tris-borate, 10 mM EDTA, pH 8.0 

10x Tris-buffered saline (TBS) (pH 7.4)

8 g/l NaCI. 0.2 g/l KCI, 3 g/l Tris base, 0.015 g/l phenol red 

50x TAE

2 M Tris-acetate, 50 mM EDTA (pH 8.0)

Tris EDTA (TE) (pH 8.0)

10 mM Tris-CI (pH 8.0), 0.1 mM EDTA (pH 8.0)

A.1.2 Bacterial Growth Media and Antibiotic Solutions
The following growth media were prepared in dH20, sterilised in the

absence of antibiotics by autoclaving and stored at RT. Antibiotic stock solutions 

were made with H2O, sterilised using 0.22 pm filters and stored at -20°C. 

Luria-Bertani (LB) medium (pH 7.0)

10 g/l tryptone, 5 g/l yeast extract, 10 g/l NaCI
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LB agar (LA)

LB medium, 15 g/l Bacto agar added before autoclaving 

2x YT medium (pH 7.0)

16 g/l tryptone, 10 g/l yeast extract, 5 g/l NaCI 

SOC medium (pHY.O)

20 g/l tryptone, 5 g/l yeast extract, 0.5 g/l NaCI, 2.03 g/l MgCL, 20 mM 

glucose

Antibiotic soiutions

Sterile-filtered stock solution of ampicillin (amp) (50 mg/ml H2 O) and 

tetracycline (tet) (15 mg/ml 50% ethanol (v/v))] were kept at -20°C and added to 

sterilised media as required [amp (100 pg/ml), tet (15 pg/ml)], unless otherwise 

stated.

A.2 Antibodies, Cell Strains, Plasmids and Primers

194



in
G)

8
O

%0
c
21
0)
co

T3
0)
c
0

1
Q.
Q.<

Co

o
g
o

I
o
.Q
C<

ooo
CM

(0
0
x:±±
E

CO

Ero
. c
E0
E<

£ro
JZ
E0
E<

nil
JD Ü Ü

0
g:

oooin

111

Ü

0
Ü(/>II0 D 

V) 13

II
1
^  CO 3 T-

LUi
o

o*o

g

0'C#oJD0
Ü

S'CIoJD0
§

Ooo
oooin

oooin oo oo

i s  ./as
O

CL ”

.ê
X
I

CO

§ s

oD)

ÜOco

■D

— m O)III
Ü_0)

i fo 
E

CDD).

II
■o±j 0

S  0 
?•§

II
t

oD)

O
9If
Iq 0 0 D 
OC J5

O)
CM LL

CL
è

CO
< /)

X
è è

b
0 0 0 0
T3 T3 T3 ■D
C C C C
o o o oÜ Ü Ü Ü
0 0 0 0

CO CO CO CO

.273
O.Q
C<

<
_0
.Q
0

(O
E0

Ic0 
c3
E
E

d
X

El
JJ
LU
b)
c1 
13
EI



CDO)

î
3
O
CO

o
0  c
21

0
a

CDO)
G)

I0
T3
C
0
X
3
O

0I
g
■§
0

co
G)
Gi

0

0
C
0

§
0
Û

0

ac
o
&
k .o
8
Q

Q .

I
■O 
C 
0

f  O

8J=
ü

CO
LU
û

O13

_J C

0
E
0

21
CD
E

T3

I
0
Q

8
lu

o
LU
Qg
CD*

CD
LU

0
c
0

I
S

CMN
G)

0
■ g
0
c

. cü
co

II 
;

0

0
0

S I

%
5

R
T-

I

CD

I
0

%
S
R

CD

I
O O

0

0 0 îi
0):QII

0  .5
w c
€ -b

■|s 
§  gü  0

I
Q. (/)

{|i
!i>

ü E

ill

i

111

2
co
O )

lu N

§CT 0
O

II
11
il

o 0 
c  s:0  -o
0  0

II 
II
"3  C1

E

C
01
3
O"
2
0  
c

1

0

0

0

0
C
0
D)I

0
C
0I

B-

§

i

i2  K

0  >» 
o  0

<  H

c  
o  
0
s
Q .
g O  
0  O

g

8

LU
Qi
o
<

8
LÜ
00co
N
X
LU

8

Ü
3
0
CD1
o

_0

^  ü
ü co 
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No. Name Sequences (5’-^ 3’) Tm
(°C)

*RS/(Applicat!on

1 5’sen(N)N1B CCGAATTCATGGCGTCTGTGTTTC 60 EcoRI (Gloning in
EcoRI GAAG 0GEX-4T1)

2 3’anti(N)N1B Notl TCCACGTCGCGGCCGCCTACTCCT 58 Not\ (Gioning in
CGGCTGTGCC pGEX-411)

3 5’sen(N)N1B Sal CCGAATTCGTCGACGATGGCGTCT 64 Sail (Gloning in
I/Not 1 GTGTTTCGAAG pSOS)

4 3’anti (N)N1B TCCACATCGCGGCCGCGTGGGTTT 66 Sa/I (Gloning in
Notl/sal 1 ATGTCCCGGTAGC pSOS)

5 5’sen(N)N1B Spe CGACTAGTATGGCGTCTGTGTTTC 64 Spel (Gloning in
I/Age 1 GAAGC pMT/BiPA/5-His

6 3’anti (N)N1B CGACCGGTTGGGTTTATCTCCCGG 62 Age\ (Gloning in
Age l/Spe 1 TAGC pMT/BiPA/5-His

7 5’senN1Bloop2B/ CGGGATCCAATGACTGCTTCTCCA 70 BamHI (Gloning
E AGTCGTTG in miniprseta-

8 3’antiN1Bloop2E/ GGGAATTCGGAGATGTTGATTTTAT 60 EcoRI (Gloning in
B AGGAG miniprseta-mac)

9 5’sen(Loop2)N1B GGGTCGACGAATGAGTGGTTGTGG 62 Sa/I (Gloning in
Sal I/Not 1 AAGTGG pSOS)

10 3’anti (N)N1B TGGAGATGGCGGCCGCGGAGATGT 60 Not\ (Gloning in
Notl/sal 1 TGATTTTATAGGAG pSOS)

11 5’sen(C)N1B GGGGATCCATGGAGGGGGTGTGTG 66 BamHI (Gloning
BamHI GTTTG in pGEX-4T1)

12 3’anti(C)N1B GGGAATTCGTAGTGGTGGGGTGTG 68 EcoRI (Gloning in
EcoRI GGATG PGEX-4T1)

13 5’-F-a4(C)- GTGGAGGGGGTGGAAGTGGAGTGG 81.65 Mutagenesis
R-^Q-muta. GTTGAG

14 3’-R-a4(C)-R—>Q- GTGAAGGGAGTGGAGTTGGAGGGG 81.65 Mutagenesis
muta. GTGGAG

15 5’-F-a4(C)- GGAGAAGAAGTTGTATGTGAGGGAT 80.6 Mutagenesis
G^R-muta. GGTTAGAAGTl 1 I'GTGG

16 3’-R-a4(C)- GGAGAAAAGTTGTAAGGATGGGTGA 80.6 Mutagenesis
G->R-muta GATAGAAGTTGTTGTGG

17 5’ pGEX GGGGTGGGAAGGGAGGTTTGGTG 76 Sequencing
18 3’ pGEX GGGGGAGGTGGATGTGTGAGAGG 76 Sequencing
19 96 gill 5' GGGTGATAGTTAGGGTAAGG 60 Sequencing
20 Sos 5’ primer GGAAGAGGAGGTAGGATG 56 Sequencing
21 Sos 3" primer GGGAGGGI 1 1 IGGGAGT 54 Sequencing
22 Myr 5’ primer AGTAGTAGGAGGTGTAATAG 56 PGR; Sequencing
23 Myr 3’ primer GGTGAATGTAAGGGTGAGAT 58 PGR; Sequencing
24 pMT Forward GATGTGAGTGGAAGTAAA 50 Sequencing
25 RTA2Pr6 TATGAATGTGAAGAGGTTTGAAAGG 68 Sequencing
26 RTA2Pr10 GGTGATGATTTGTTTAGTGAGGAG 68 Sequencing
27 RTA2Pr14 GAGGGTGGGGTGGAGGGGAG 70 Sequencing
28 RTA2Pr17 GTTGTGGAGGTTGATGAGGGAG 68 Sequencing
29 RTA2Pr13 GTGGGGAGATTGGGGAGAGTAAG 72 Sequencing
30 RTA2Pr7 AGGATTGTGTGGAGTGATTGAGAG 70 Sequencing

Table A.3 Primers
*Tm value For primers No.13-16, was calculated according to a formula: Tm = 81.5 + 
0.41 (%GC) -  675 / N - % mismatch, which was provided by the manufacturer’s 
instruction. Where, N is the primer length in base pairs. The highlighted bases in primers 
indicate restriction sites (*RS), and, the underlined bases (in primers No. 13-16) indicate 
where codons have been changed.
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Plasmid Characteristics Source
pGEM-T Easy -a4 Cloning vector containing 

human a4 cDNA fragment, 
amp’', lacZ

Dr Smith A.N 
(Department of Medical 
Genetics, University of 
Cambridge)

pGEX-4T-1 Bacterial expression vector, 
amp''

Pharmacia Biotech,

pGEX-a4(C) pGEX-4T-1 containing a4(C)- 
WT cDNA fragment

This study

pGEX-a4(G)-G pGEX-4T-1 containing a4(C)- 
G cDNA fragment

This study

pGEX-a4(C)-Q pGEX-4T-1 containing a4(C)- 
Q cDNA fragment

This study

pGEX-a4(N) pGEX-4T-1 containing a4(N) 
cDNA fragment

This study

pSOS Yeast expression vector, 
LEU2, amp''

Stratagene

pS0S-a4(N) pSOS containing a4(N) cDNA 
fragment

This study

pSOS-a4(Loop2) pSOS containing a4(Loop2) 
cDNA fragment

This study

pSOS-Col 1 pSOS containing Col 1 cDNA 
fragment

Stratagene

pMyr Yeast expression vector, 
Myristylation signal, URA3, 
cam''

Stratagene

miniprseta-mac Bacterial expression vector, 
amp'', His-tagged

Dr Jane Clark 
(department of 
Chemistry, University of 
Cambridge)

prseta- a4(Loop2) miniprseta-mac containing 
a4(Loop2) cDNA fragment

This Work

pMT/BipA/5-His A Drosophila cell expression 
vector, His-tagged, amp\

Invitrogen

pMT-a4(N) pMT/BipA/5-His A containing 
a4(N) cDNA fragment

This study

pCoHYGRO Selection vector, amp'', hy^, Invitrogen

Table A.4 Plasmids
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GGT CTG GTT CCG COT GGA TCC GAO CTC GAC ATC TGC AGO TOG TAC CAT GGA ATT CGA AOC 7TG

EcoR I Hind IIIBamH I Sac I Pst I Pvu II Kpn I

Thrombin cleavage site Stop

PAG, COO COG p AT COT OACCTO OTT CCO COT ÇGA TCC, CCO ÇAA TTq CCO OÇT COA 

-—   BamH I EcoR I Sma I Sal I Xho I Notl

4 .9  k b

Figure A.1 Bacterial expression vectors for expression in E. coli cells
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Bgl II Nco I Sma I Kpn I Spe I BstXI_x_ EcoR I EcoRV

iBiPSS AGA TCT CCA TGG CCC GGG GTA CCT ACT AGT CCA GTG TGG TGG AAT TCT GCA GAT ATC CAG 
CAC AGT GGC GGC CGC TCG AG |T CTA GAG GGC CCfT TCG AAlVS epitope 6xHisCGT ACC GGT

V
Xba IXho I

3

Figure A.2 Insectile expression vector for expression in S2 cells.
Boxed nucleotides indicate the variable region for pMT/BiPA/5-His A, B and C vectors.
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AGG ATC CGC ATG GGC GGG GGG AGG TGG AGG GGG GGA GGG GTG AGG TGG GGG GGG GGG GGG TTA ATT 

BamH I Nco I Srf I Aat II Sal I BssH II Mlu I Sac I Not I Sac II Stop

pSOS 
plasmid vector 

llJkb

TGT AGA GAA TTG GGG GGG GGG TGG AGG TGG AGT AAT TGA ATA ATA AGG

Sail StopEcoR I Srf l/Sma I Xho IXba I

pMyr 
Plasmid vector 

& lkb

Figure A.3 Yeast expression vectors.
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