9 research outputs found

    Quantifying the effects of sensor coatings on body temperature measurements

    No full text
    Background: A characterization of an organism's thermoregulatory ability informs our understanding of its physiology, ecology and behavior. Biotelemetry studies on thermoregulation increasingly rely on in situ body temperature measurements from surgically implanted data loggers. To protect the organism and the instrument, the electronics and the temperature sensor are often encased in non-conductive materials prior to insertion into the organism. These materials thermally insulate the sensor, thus potentially biasing temperature measurements to suggest a greater degree of thermoregulation than is actually the case. Results: Here we present methodology to quantify and correct for the effect of sensor coatings on temperature measurements by data recording tags. We illustrate these methods using Wildlife Computer's Mk9 archival tag, field data from the peritoneal cavity of a juvenile albacore tuna (Thunnus alalunga) and simulated data of several species of ectotherms (fish: Hemitripterus americanus, Catostomus commersoni and Maxostoma macrolepidotum; reptiles: Macroclemys temminckii, Varanus spp.), ranging in size from 10 to 1000 g. Mk9 tags had rate constants (measures of the sensor's ability to respond to changes in temperature) of 1.79 ± 0.06 and 0.81 ± 0.07 min-1 for the external and internal sensors, respectively. The higher rate constant of the external sensor produced smaller errors than the internal sensor. Yet, both sensors produced instantaneous errors of over 1 °C for all species tested, with the exception of T. alalunga. Conclusions: The effect of sensor coatings on body temperature measurements is shown to depend on the relative values of the sensor's and the organism's rate constant and the rate of change of environmental temperature. If the sensor's rate constant is lower than that of the organism, the temperature measurements will reflect the thermal properties of the sensor rather than the organism

    Summer day-roost selection by eastern red bats varies between areas with different land-use histories

    No full text
    © 2020 Monarchino et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The eastern red bat (Lasiurus borealis) is widely considered to be in decline, inspiring interest in identifying important habitats for conservation in the eastern United States. Unfortunately, knowledge of important day-roosting habitats is lacking for much of the species’ range. We examined patterns of day-roost selection by male and female eastern red bats at two study sites in southeastern Ohio, U. S. A, to help fill this information gap. We radio-tagged 28 male and 25 female bats during the summers of 2016–2019 and located 53 male and 74 female roosts. Day-roost selection differed between sexes and study areas. In a mostly even-aged forest with significant historical disturbance, we found males and females roosting in trees located at higher elevations, with no clear selection based on tree or stand characteristics. Specifically, males selected trees with larger diameters located at lower, cooler elevations than females, which selected smaller diameter trees found at higher, warmer elevations. However, in a forest with less historical disturbance and more structural diversity, we found sexes differed in how they selected from available habitats. These data show that heterogeneity in environmental conditions can lead to different patterns in selection, even between sites located within a small geographic area. They also show that eastern red bats sexually segregate on the local landscape in the presence of diverse forest conditions but may not do so in the absence of such diversity. We recommend managing forests to maintain structural diversity across an elevational gradient to provide male and female eastern red bats with suitable day-roosting habitat in southeast Ohio

    Exploring Regional Variation in Roost Selection by Bats: Evidence from a Meta-Analysis

    Get PDF
    <div><p>Background and Aims</p><p>Tree diameter, tree height and canopy closure have been described by previous meta-analyses as being important characteristics in roost selection by cavity-roosting bats. However, size and direction of effects for these characteristics varied greatly among studies, also referred to as heterogeneity. Potential sources of heterogeneity have not been investigated in previous meta-analyses, which are explored by correlating additional covariates (moderator variables). We tested whether effect sizes from 34 studies were consistent enough to reject the null hypothesis that trees selected by bats did not significantly differ in their characteristics from randomly selected trees. We also examined whether heterogeneity in tree diameter effect sizes was correlated to moderator variables such as sex, bat species, habitat type, elevation and mean summer temperature.</p><p>Methods</p><p>We used Hedges’ g standardized mean difference as the effect size for the most common characteristics that were encountered in the literature. We estimated heterogeneity indices, potential publication bias, and spatial autocorrelation of our meta-data. We relied upon meta-regression and multi-model inference approaches to evaluate the effects of moderator variables on heterogeneity in tree diameter effect sizes.</p><p>Results</p><p>Tree diameter, tree height, snag density, elevation, and canopy closure were significant characteristics of roost selection by cavity-roosting bats. Size and direction of effects varied greatly among studies with respect to distance to water, tree density, slope, and bark remaining on trunks. Inclusion of mean summer temperature and sex in meta-regressions further explained heterogeneity in tree diameter effect sizes.</p><p>Conclusions</p><p>Regional differences in roost selection for tree diameter were related to mean summer temperature. Large diameter trees play a central role in roost selection by bats, especially in colder regions, where they are likely to provide a warm and stable microclimate for reproductive females. Records of summer temperature fluctuations inside and outside tree cavities that are used by bats should be included in future research.</p></div
    corecore