1,543 research outputs found

    Weak Mirror Symmetry of Complex Symplectic Algebras

    Full text link
    A complex symplectic structure on a Lie algebra \lie h is an integrable complex structure JJ with a closed non-degenerate (2,0)(2,0)-form. It is determined by JJ and the real part Ω\Omega of the (2,0)(2,0)-form. Suppose that \lie h is a semi-direct product \lie g\ltimes V, and both \lie g and VV are Lagrangian with respect to Ω\Omega and totally real with respect to JJ. This note shows that \lie g\ltimes V is its own weak mirror image in the sense that the associated differential Gerstenhaber algebras controlling the extended deformations of Ω\Omega and JJ are isomorphic. The geometry of (Ω,J)(\Omega, J) on the semi-direct product \lie g\ltimes V is also shown to be equivalent to that of a torsion-free flat symplectic connection on the Lie algebra \lie g. By further exploring a relation between (J,Ω)(J, \Omega) with hypersymplectic algebras, we find an inductive process to build families of complex symplectic algebras of dimension 8n8n from the data of the 4n4n-dimensional ones.Comment: 22 page

    Scattering mechanism in a step-modulated subwavelength metal slit: a multi-mode multi-reflection analysis

    Get PDF
    In this paper, the scattering/transmission inside a step-modulated subwavelength metal slit is investigated in detail. We firstly investigate the scattering in a junction structure by two types of structural changes. The variation of transmission and reflection coefficients depending on structural parameters are analyzed. Then a multi-mode multi-reflection model based on ray theory is proposed to illustrate the transmission in the step-modulated slit explicitly. The key parts of this model are the multi-mode excitation and the superposition procedure of the scatterings from all possible modes, which represent the interference and energy transfer happened at interfaces. The method we use is an improved modal expansion method (MEM), which is a more practical and efficient version compared with the previous one [Opt. Express 19, 10073 (2011)]. In addition, some commonly used methods, FDTD, scattering matrix method, and improved characteristic impedance method, are compared with MEM to highlight the preciseness of these methods.Comment: 25 pages, 9 figure

    BPS R-balls in N=4 SYM on R X S^3, Quantum Hall Analogy and AdS/CFT Holography

    Get PDF
    In this paper, we propose a new approach to study the BPS dynamics in N=4 supersymmetric U(N) Yang-Mills theory on R X S^3, in order to better understand the emergence of gravity in the gauge theory. Our approach is based on supersymmetric, space-filling Q-balls with R-charge, which we call R-balls. The usual collective coordinate method for non-topological scalar solitons is applied to quantize the half and quarter BPS R-balls. In each case, a different quantization method is also applied to confirm the results from the collective coordinate quantization. For finite N, the half BPS R-balls with a U(1) R-charge have a moduli space which, upon quantization, results in the states of a quantum Hall droplet with filling factor one. These states are known to correspond to the ``sources'' in the Lin-Lunin-Maldacena geometries in IIB supergravity. For large N, we find a new class of quarter BPS R-balls with a non-commutativity parameter. Quantization on the moduli space of such R-balls gives rise to a non-commutative Chern-Simons matrix mechanics, which is known to describe a fractional quantum Hall system. In view of AdS/CFT holography, this demonstrates a profound connection of emergent quantum gravity with non-commutative geometry, of which the quantum Hall effect is a special case.Comment: 42 pages, 2 figures; v3: a new paragraph on counting unbroken susy of NC R-balls and references adde

    Density Matrix in Quantum Mechanics and Distinctness of Ensembles Having the Same Compressed Density Matrix

    Full text link
    We clarify different definitions of the density matrix by proposing the use of different names, the full density matrix for a single-closed quantum system, the compressed density matrix for the averaged single molecule state from an ensemble of molecules, and the reduced density matrix for a part of an entangled quantum system, respectively. We show that ensembles with the same compressed density matrix can be physically distinguished by observing fluctuations of various observables. This is in contrast to a general belief that ensembles with the same compressed density matrix are identical. Explicit expression for the fluctuation of an observable in a specified ensemble is given. We have discussed the nature of nuclear magnetic resonance quantum computing. We show that the conclusion that there is no quantum entanglement in the current nuclear magnetic resonance quantum computing experiment is based on the unjustified belief that ensembles having the same compressed density matrix are identical physically. Related issues in quantum communication are also discussed.Comment: 26 pages. To appear in Foundations of Physics, 36 (8), 200

    Digoxin net secretory transport in bronchial epithelial cell layers is not exclusively mediated by P-glycoprotein/MDR1

    Get PDF
    Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are creditedThe impact of P-glycoprotein (MDR1, ABCB1) on drug disposition in the lungs as well as its presence and activity in in vitro respiratory drug absorption models remain controversial to date. Hence, we characterised MDR1 expression and the bidirectional transport of the common MDR1 probe 3H-digoxin in air-liquid interfaced (ALI) layers of normal human bronchial epithelial (NHBE) cells and of the Calu-3 bronchial epithelial cell line at different passage numbers. Madin-Darby Canine Kidney (MDCKII) cells transfected with the human MDR1 were used as positive controls. 3H-digoxin efflux ratio (ER) was low and highly variable in NHBE layers. In contrast, ER=11.4 or 3.0 was measured in Calu-3 layers at a low or high passage number, respectively. These were, however, in contradiction with increased MDR1 protein levels observed upon passaging. Furthermore, ATP depletion and the two MDR1 inhibitory antibodies MRK16 and UIC2 had no or only a marginal impact on 3H-digoxin net secretory transport in the cell line. Our data do not support an exclusive role of MDR1 in 3H-digoxin apparent efflux in ALI Calu-3 layers and suggest the participation of an ATP-independent carrier. Identification of this transporter might provide a better understanding of drug distribution in the lungs.Peer reviewe

    Electroweak Corrections to the Charged Higgs Boson Decay into Chargino and Neutralino

    Full text link
    The electroweak corrections to the partial widths of the H+→χ~i+χ~j0(i=1,j=1,2)H^+ \to \tilde{\chi}^+_i \tilde{\chi}_j^0 (i=1,j=1,2) decays including one-loop diagrams of the third generation quarks and squarks, are investigated within the Supersymmetric Standard Model. The relative corrections can reach the values about 10%, therefore they should be taken into account for the precise experimental measurement at future colliders.Comment: 21 pages, 6 eps figures, 1 Latex fil

    Systematic Cu-63 NQR studies of the stripe phase in La(1.6-x)Nd(0.4)Sr(x)CuO(4) for 0.07 <= x <= 0.25

    Full text link
    We demonstrate that the integrated intensity of Cu-63 nuclear quadrupole resonance (NQR) in La(1.6-x)Nd(0.4)Sr(x)CuO(4) decreases dramatically below the charge-stripe ordering temperature T(charge). Comparison with neutron and X-ray scattering indicates that the wipeout fraction F(T) (i.e. the missing fraction of the integrated intensity of the NQR signal) represents the charge-stripe order parameter. The systematic study reveals bulk charge-stripe order throughout the superconducting region 0.07 <= x <= 0.25. As a function of the reduced temperature t = T/T(charge), the temperature dependence of F(t) is sharpest for the hole concentration x=1/8, indicating that x=1/8 is the optimum concentration for stripe formation.Comment: 10 pages of text and captions, 11 figures in postscript. Final version, with new data in Fig.

    Electronic structure in underdoped cuprates due to the emergence of a pseudogap

    Full text link
    The phenomenological Green's function developed in the works of Yang, Rice and Zhang has been very successful in understanding many of the anomalous superconducting properties of the deeply underdoped cuprates. It is based on considerations of the resonating valence bond spin liquid approximation and is designed to describe the underdoped regime of the cuprates. Here we emphasize the region of doping, xx, just below the quantum critical point at which the pseudogap develops. In addition to Luttinger hole pockets centered around the nodal direction, there are electron pockets near the antinodes which are connected to the hole pockets by gapped bridging contours. We determine the contours of nearest approach as would be measured in angular resolved photoemission experiments and emphasize signatures of the Fermi surface reconstruction from the large Fermi contour of Fermi liquid theory (which contains 1+x1+x hole states) to the Luttinger pocket (which contains xx hole states). We find that the quasiparticle effective mass renormalization increases strongly towards the edge of the Luttinger pockets beyond which it diverges.Comment: 11 pages, 9 figure

    Direct Measurements of the Branching Fractions for D0→K−e+νeD^0 \to K^-e^+\nu_e and D0→π−e+νeD^0 \to \pi^-e^+\nu_e and Determinations of the Form Factors f+K(0)f_{+}^{K}(0) and f+π(0)f^{\pi}_{+}(0)

    Get PDF
    The absolute branching fractions for the decays D0→K−e+νeD^0 \to K^-e ^+\nu_e and D0→π−e+νeD^0 \to \pi^-e^+\nu_e are determined using 7584±198±3417584\pm 198 \pm 341 singly tagged Dˉ0\bar D^0 sample from the data collected around 3.773 GeV with the BES-II detector at the BEPC. In the system recoiling against the singly tagged Dˉ0\bar D^0 meson, 104.0±10.9104.0\pm 10.9 events for D0→K−e+νeD^0 \to K^-e ^+\nu_e and 9.0±3.69.0 \pm 3.6 events for D0→π−e+νeD^0 \to \pi^-e^+\nu_e decays are observed. Those yield the absolute branching fractions to be BF(D0→K−e+νe)=(3.82±0.40±0.27)BF(D^0 \to K^-e^+\nu_e)=(3.82 \pm 0.40\pm 0.27)% and BF(D0→π−e+νe)=(0.33±0.13±0.03)BF(D^0 \to \pi^-e^+\nu_e)=(0.33 \pm 0.13\pm 0.03)%. The vector form factors are determined to be ∣f+K(0)∣=0.78±0.04±0.03|f^K_+(0)| = 0.78 \pm 0.04 \pm 0.03 and ∣f+π(0)∣=0.73±0.14±0.06|f^{\pi}_+(0)| = 0.73 \pm 0.14 \pm 0.06. The ratio of the two form factors is measured to be ∣f+π(0)/f+K(0)∣=0.93±0.19±0.07|f^{\pi}_+(0)/f^K_+(0)|= 0.93 \pm 0.19 \pm 0.07.Comment: 6 pages, 5 figure
    • …
    corecore