62 research outputs found

    Excess noise measurement in In0.53Ga0.47As

    Get PDF
    The excess noise due to impact ionization has been measured explicitly for the first time in In/sub 0.53/Ga/sub 0.47/As. By using a phase sensitive detection technique, the noise due to avalanche current was determined even in the presence of high tunneling currents. The excess noise due to pure electron injection measured on a series of thick In/sub 0.53/Ga/sub 0.47/As p/sup +/-i-n/sup +/ diodes suggests large electron to hole ionization coefficient ratio between 3.7 at electric field of 310 kV/spl middot/cm/sup -1/ to 5.3 at 260 kV/spl middot/cm/sup -1/. Excess noise was also measured at fields as low as 155 kV/spl middot/cm/sup -1/ suggesting that significant impact ionization occurs at these low fields. The multiplication and excess noise calculated using published ionization coefficients and ignoring dead space effects, gave good agreement with the experimental data for mixed and pure electron injection

    A theoretical comparison of the breakdown behavior of In0.52Al0.48As and InP near-infrared single-photon avalanche photodiodes

    No full text
    We study the breakdown characteristics and timing statistics of InP and In0.52Al0.48As single-photon avalanche photodiodes (SPADs) with avalanche widths ranging from 0.2 to 1.0 mu m at room temperature using a random ionization path-length model. Our results show that, for a given avalanche width, the breakdown probability of In0.52Al0.48As SPADs increases faster with overbias than InP SPADs. When we compared their timing statistics, we observed that, for a given breakdown probability, InP requires a shorter time to reach breakdown and exhibits a smaller timing jitter than In0.52Al0.48As. However, due to the lower dark count probability and faster rise in breakdown probability with overbias, In0.52Al0.48As SPADs with avalanche widths <= 0.5 mu m are more suitable for single-photon detection at telecommunication wavelengths than InP SPADs. Moreover, we predict that, in InP SPADs with avalanche widths <= 0.3 mu m and In0.52Al0.48As SPADs with avalanche widths <= 0.2 mu m, the dark count probability is higher than the photon count probability for all applied biases

    Application of Ribosomal RNA Gene Restriction Patterns Analysis and Pulsed-Field Gel Electrophoresis in Distinguishing Salmonella Weltevreden Isolates in Malaysia

    Get PDF
    A representative sample of 20 isolates of Salmonella weltevreden strains from stool cultures of patients admitted at the University Hospital, Kuala Lumpur, Malaysia were analyzed. All the strains were susceptible to ampicillin, ceftriaxone, ciprofloxacin, chloramphenicol, tetracycline, trimethoprim, gentamicin and co-trimoxazole. Ribosomal RNA gene restriction pattern analysis of PstI-digested DNA gave three ribotypes while pulsed-field gel electrophoresis (PFGE) analysis of XbaI-digested DNA gave ten distinct profiles. PFGE was more discriminative than ribotyping in distinguishing the strains. The majority of the strains analyzed were very closely related with similarity coefficient values ranging from 0.8 to 1.0. Both PFGE and ribotyping could distinguish one of the strains which was obtained from a patient following a bone marrow transplant for β-thalassemia major, indicating that this particular strain was unrelated to the rest of the strains from patients with acute gastroenteritis

    Improved Optoelectronic Properties of Rapid Thermally Annealed Dilute Nitride GaInNAs Photodetectors

    Get PDF
    We investigate the optical and electrical characteristics of GaInNAs/GaAs long-wavelength photodiodes grown under varying conditions by molecular beam epitaxy and subjected to postgrowth rapid thermal annealing (RTA) at a series of temperatures. It is found that the device performance of the nonoptimally grown GaInNAs p-i-n structures, with nominal compositions of 10% In and 3.8% N, can be improved significantly by the RTA treatment to match that of optimally grown structures. The optimally annealed devices exhibit overall improvement in optical and electrical characteristics, including increased photoluminescence brightness, reduced density of deep-level traps, reduced series resistance resulting from the GaAs/GaInNAs heterointerface, lower dark current, and significantly lower background doping density, all of which can be attributed to the reduced structural disorder in the GaInNAs alloy.© 2012 TMS

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF

    The Physics of the B Factories

    Get PDF

    Planning environmental stress-screening based on DOD-HDBK-344 - A case study

    No full text
    10.1016/0026-2714(95)00181-ZMicroelectronics Reliability36183-90MCRL
    corecore