13 research outputs found

    Search for B+ -> D*+ pi0 decay

    Full text link
    We report on a search for the doubly Cabibbo suppressed decay B+ -> D*+ pi0, based on a data sample of 657 million BBbar pairs collected at the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric energy e+ e- collider. We find no significant signal and set an upper limit of Br(B+ -> D*+ pi0) < 3.6 x 10^-6 at the 90% confidence level. This limit can be used to constrain the ratio between suppressed and favored B -> D* pi decay amplitudes, r < 0.051, at the 90% confidence level.Comment: 5pages, 2figures, submitted to PRL (v1); PRL published version (v2: minor corrections in the text

    Measurement of the Decay B_s^0 -> D_s^- pi^+ and Evidence for B_s^0 -> D_s^{+/-} K^{-/+} in e+e- Annihilation at sqrt(s)~10.87 GeV

    Full text link
    We have studied Bs0 -> Ds- pi+ and Bs0 -> Ds^(-/+) K^(+/-) decays using 23.6 /fb of data collected at the Upsilon(5S) resonance with the Belle detector at the KEKB e+e- collider. This highly pure Bs0 -> Ds- pi+ sample is used to measure the branching fraction, BR(Bs0 -> Ds- pi+)=[3.67 +0.35,-0.33}(stat.) +0.43,-0.42(syst.) +-0.49(f_s)] x 10^{-3} (f_s=N(Bs(*) Bs(*)bar)/N(b\bar b)) and the fractions of Bs0 event types at the Upsilon(5S) energy, {in particular N(Bs* Bs*bar}/N(N(Bs(*) Bs(*)bar)=(90.1 +3.8,-4.0 +-0.2)%. We also determine the masses M(Bs0)=(5364.4 +-1.3 +-0.7) MeV/c^2 and M(Bs*)=(5416.4 +-0.4 +-0.5) MeV/c^2. In addition, we observe Bs0 -> Ds^(-/+) K^(+/-) decays with a significance of 3.5\sigma and measure BR(Bs0 -> Ds^(-/+) K^(+/-))=[2.4 +1.2,-1.0(stat.) +-0.3(syst.) +-0.3(f_s)] x 10^{-4}.Comment: 5 pages, 4 figures, accepted by PR

    Search for B0J/ψϕB^0 \to J/\psi \phi

    Full text link
    We report a search for the decay B0J/ψϕB^0 \to J/\psi \phi, using a sample of 657 ×106\times 10^6 BBˉB\bar{B} pairs collected with the Belle detector at the Υ(4S)\Upsilon(4S) resonance. No statistically significant signal is found and an upper limit for the branching fraction is determined to be B(B0J/ψϕ)<9.4×107\mathcal{B}(B^0 \to J/\psi \phi) < 9.4 \times 10^{-7} at 90% confidence level.Comment: 5 pages, 2 figures, 3 tables, submitted to PRD(RC

    The Earth: Plasma Sources, Losses, and Transport Processes

    Get PDF
    This paper reviews the state of knowledge concerning the source of magnetospheric plasma at Earth. Source of plasma, its acceleration and transport throughout the system, its consequences on system dynamics, and its loss are all discussed. Both observational and modeling advances since the last time this subject was covered in detail (Hultqvist et al., Magnetospheric Plasma Sources and Losses, 1999) are addressed

    The Physics of the B Factories

    Get PDF

    Measurement of azimuthal asymmetries in inclusive production of hadron pairs in e+e- annihilation at s=10.58GeV

    No full text
    The Collins effect connects transverse quark spin with a measurable azimuthal asymmetry in the yield of hadronic fragments around the quark's momentum vector. Using two different reconstruction methods we measure statistically significant azimuthal asymmetries for charged pion pairs in e+e- annihilation at center-of-mass energies of 10.52 GeV and 10.58 GeV, which can be attributed to the fragmentation of primordial quarks with transverse spin components. The measurement was performed using a data set of 547fb-1 collected by the Belle detector at KEKB improving the statistics of the previously published results by nearly a factor of 20. © 2008 The American Physical Society

    Dynamic Light Scattering Based Microelectrophoresis: Main Prospects and Limitations

    No full text
    Microelectrophoresis based on the dynamic light scattering (DLS) effect has been a major tool for assessing and controlling the conditions for stability of colloidal systems. However, both the DLS methods for characterization of the hydrodynamic size of dispersed submicron particles and the theory behind the electrokinetic phenomena are associated with fundamental and practical approximations that limit their sensitivity and information output. Some of these fundamental limitations, including the spherical approximation of DLS measurements and an inability of microelectrophoretic analyses of colloidal systems to detect discrete charges and differ between differently charged particle surfaces due to rotational diffusion and particle orientation averaging, are revisited in this work. Along with that, the main prospects of these two analytical methods are mentioned. A detailed review of the role of zeta potential in processes of biochemical nature is given too. It is argued that although zeta potential has been used as one of the main parameters in controlling the stability of colloidal dispersions, its application potentials are much broader. Manipulating surface charges of interacting species in designing complex soft matter morphologies using the concept of zeta potential, intensively investigated recently, is given as one of the examples. Branching out from the field of colloid chemistry, DLS and zeta potential analyses are now increasingly finding application in drug delivery, biotechnologies, physical chemistry of nanoscale phenomena and other research fields that stand on the frontier of the contemporary science. Coupling the DLS-based microelectrophoretic systems with complementary characterization methods is mentioned as one of the prosperous paths for increasing the information output of these two analytical techniques
    corecore