366 research outputs found

    Observation of correlated-photon statistics using a single detector

    Full text link
    We report experimental observations of correlated-photon statistics in the single-photon detection rate. The usual quantum interference in a two-photon polarization interferometer always accompanies a dip in the single detector counting rate, regardless of whether a dip or peak is seen in the coincidence rate. This effect is explained by taking into account all possible photon number states that reach the detector, rather than considering just the state post-selected by the coincidence measurement. We also report an interferometeric scheme in which the interference peak or dip in coincidence corresponds directly to a peak or dip in the single-photon detection rate.Comment: 4 pages, two-column (minor errors corrected.

    Quantum interference with beamlike type-II spontaneous parametric down-conversion

    Full text link
    We implement experimentally a method to generate photon-number−-path and polarization entangled photon pairs using ``beamlike'' type-II spontaneous parametric down-conversion (SPDC), in which the signal-idler photon pairs are emitted as two separate circular beams with small emission angles rather than as two diverging cones.Comment: 4 pages, two-colum

    Experimental Entanglement Concentration and Universal Bell-state Synthesizer

    Get PDF
    We report a novel Bell-state synthesizer in which an interferometric entanglement concentration scheme is used. An initially mixed polarization state from type-II spontaneous parametric down-conversion becomes entangled after the interferometric entanglement concentrator. This Bell-state synthesizer is universal in the sense that the output polarization state is not affected by spectral filtering, crystal thickness, and, most importantly, the choice of pump source. It is also robust against environmental disturbance and a more general state, partially mixed−-partially entangled state, can be readily generated as well.Comment: Minor update (Newer data

    First-order interference of nonclassical light emitted spontaneously at different times

    Get PDF
    We study first-order interference in spontaneous parametric down-conversion generated by two pump pulses that do not overlap in time. The observed modulation in the angular distribution of the signal detector counting rate can only be explained in terms of a quantum mechanical description based on biphoton states. The condition for observing interference in the signal channel is shown to depend on the parameters of the idler radiation.Comment: 5 pages, two-column, submitted to PR

    Interferometric Bell-state preparation using femtosecond-pulse-pumped Spontaneous Parametric Down-Conversion

    Full text link
    We present theoretical and experimental study of preparing maximally entangled two-photon polarization states, or Bell states, using femtosecond pulse pumped spontaneous parametric down-conversion (SPDC). First, we show how the inherent distinguishability in femtosecond pulse pumped type-II SPDC can be removed by using an interferometric technique without spectral and amplitude post-selection. We then analyze the recently introduced Bell state preparation scheme using type-I SPDC. Theoretically, both methods offer the same results, however, type-I SPDC provides experimentally superior methods of preparing Bell states in femtosecond pulse pumped SPDC. Such a pulsed source of highly entangled photon pairs is useful in quantum communications, quantum cryptography, quantum teleportation, etc.Comment: 11 pages, two-column format, to appear in PR

    Nanoscale Processing by Adaptive Laser Pulses

    Full text link
    We theoretically demonstrate that atomically-precise ``nanoscale processing" can be reproducibly performed by adaptive laser pulses. We present the new approach on the controlled welding of crossed carbon nanotubes, giving various metastable junctions of interest. Adaptive laser pulses could be also used in preparation of other hybrid nanostructures.Comment: 4 pages, 4 Postscript figure

    SIR performance evaluation of MB-OFDM UWB system with residual timing offset

    Full text link
    Signal-to-interference ratio (SIR) performance of a multiband orthogonal frequency division multiplexing ultra-wideband system with residual timing offset is investigated. To do so, an exact mathematical derivation of the SIR of this system is derived. It becomes obvious that, unlike a cyclic prefixing based system, a zero padding based system is sensitive to residual timing offset.This work was supported by the National Research Foundation of Korea (NRF) grant, funded by the Korean government (MSIP) no. 2010-0018116.Islam, SMR.; Ullah, S.; Lloret, J.; Ullah, N.; Kwak, KS. (2015). SIR performance evaluation of MB-OFDM UWB system with residual timing offset. Electronics Letters. 51(5):427-429. https://doi.org/10.1049/el.2014.3967S42742951

    Reliability of the beamsplitter based Bell-state measurement

    Full text link
    A linear 50/50 beamsplitter, together with a coincidence measurement, has been widely used in quantum optical experiments, such as teleportation, dense coding, etc., for interferometrically distinguishing, measuring, or projecting onto one of the four two-photon polarization Bell-states ∣ψ(−)>|\psi^{(-)}>. In this paper, we demonstrate that the coincidence measurement at the output of a beamsplitter cannot be used as an absolute identifier of the input state ∣ψ(−)>|\psi^{(-)}> nor as an indication that the input photons have projected to the ∣ψ(−)>|\psi^{(-)}> state.Comment: 4 pages, two-colum

    Microstructural Evolution of Secondary Phases in the Cast Duplex Stainless Steels CD3MN and CD3MWCuN

    Get PDF
    The isothermal formation behavior of secondary phases in two types of duplex stainless steels (DSS), CD3MN and CD3MWCuN, was characterized. Samples were heat treated from 1 minute to 30 days at temperatures from 700°C to 900°C. Small carbide (M23C6) and nitride (Cr2N) precipitates, together with the intermetallic phases sigma and chi, were observed using scanning electron microscopy (SEM) and confirmed by transmission electron microscopy (TEM) analyses. Based on SEM analysis, time-temperature-transformation (TTT) curves for the sigma and chi phases were determined by measuring their volume fractions from backscattered electron micrographs of heat-treated and quenched sample cross sections. Resulting TTT curves showed that the maximum formation temperature for chi is lower than that for sigma, while the time to reach 1 vol pct formation is much less for sigma than it is for chi. The thermodynamic driving forces associated with the sigma and chi formation were assessed using Thermo-Calc
    • …
    corecore