19 research outputs found

    Adjustment of superconductivity and ferromagnetism in the few-layered ferromagnet–superconductor nanostructures

    No full text
    The phase diagrams of the few-layered nanosystems consisting of dirty superconducting (S) and ferromagnetic (F) metals are investigated within the framework of the modern theory of the proximity effect taking into account the boundary conditions. The F/S tetralayer and pentalayer are shown to have considerably richer physics than the F/S bi- and trilayer (due to the interplay between the 0 and π phase superconductivity and the 0 and π phase magnetism and nonequivalence of layers) and even the F/S superlattices. It is proven that these systems can have different critical temperatures and fields for different S layers. This predicted decoupled superconductivity is found to manifest itself in its most striking way for F/S tetralayer. It is shown that F/S/F/S tetralayer is the most perspective candidate for use in superconducting spin nanoelectronics

    Theoretical description of the ferromagnetic π\pi -junctions near the critical temperature

    Full text link
    The theory of ferromagnetic Pi-junction near the critical temperature is presented. It is demonstrated that in the dirty limit the modified Usadel equation adequately describes the proximity effect in ferromagnets. To provide the description of an experimentally relevant situation, oscillations of the Josephson critical current are calculated as a function of ferromagnetic layer thickness for different transparencies of the superconductor-ferromagnet interfaces.Comment: 12 pages, 4 figures, submitted to Phys. Rev.

    Thermodynamic properties of ferromagnetic/superconductor/ferromagnetic nanostructures

    Full text link
    The theoretical description of the thermodynamic properties of ferromagnetic/superconductor/ferromagnetic (F/S/F) systems of nanoscopic scale is proposed. Their superconducting characteristics strongly depend on the mutual orientation of the ferromagnetic layers. In addition, depending on the transparency of S/F interfaces, the superconducting critical temperature can exhibit four different types of dependences on the thickness of the F-layer. The obtained results permit to give some practical recommendations for the spin-valve effect experimental observation. In this spin-valve sandwich, we also expect a spontaneous transition from parallel to anti-parallel ferromagnetic moment orientation, due to the gain in the superconducting condensation energy.Comment: 20 pages, 5 figures, submitted to PR

    Bosonic sector of the two-dimensional Hubbard model studied within a two-pole approximation

    Full text link
    The charge and spin dynamics of the two-dimensional Hubbard model in the paramagnetic phase is first studied by means of the two-pole approximation within the framework of the Composite Operator Method. The fully self-consistent scheme requires: no decoupling, the fulfillment of both Pauli principle and hydrodynamics constraints, the simultaneous solution of fermionic and bosonic sectors and a very rich momentum dependence of the response functions. The temperature and momentum dependencies, as well as the dependency on the Coulomb repulsion strength and the filling, of the calculated charge and spin susceptibilities and correlation functions are in very good agreement with the numerical calculations present in the literature

    Uniform hopping approach to the FM Kondo Model at finite temperature

    Full text link
    We study the ferromagnetic Kondo model with classical corespins via unbiased Monte-Carlo simulations and derive a simplified model for the treatment of the corespins at any temperature. Our simplified model captures the main aspects of the Kondo model and can easily be evaluated both numerically and analytically. It provides a better qualitative understanding of the physical features of the Kondo model and rationalizes the Monte-Carlo results, including the spectral density A_k(omega) of a 1D chain with nearest neighbor Coulomb repulsion. By calculating the specific heat and the susceptibility of systems up to size 16^3, we determine the Curie temperature of the 3D one-orbital double-exchange model, which agrees with experimental values.Comment: 11 pages, 9 figures, RevTex4, additional references cite

    Proximity and Josephson effects in superconductor - antiferromagnetic Nb / \gamma-Fe50Mn50 heterostructures

    Full text link
    We study the proximity effect in superconductor (S), antiferromagnetic (AF) bilayers, and report the fabrication and measurement of the first trilayer S/AF/S Josephson junctions. The disordered f.c.c. alloy \gamma-Fe50Mn50 was used as the AF, and the S is Nb. Micron and sub-micron scale junctions were measured, and the scaling of JC(dAF)J_C (d_AF) gives a coherence length in the AF of 2.4 nm, which correlates with the coherence length due to suppression of TCT_C in the bilayer samples. The diffusion constant for FeMn was found to be 1.7 \times 104^{-4} m2^2 s1^-1, and the density of states at the Fermi level was also obtained. An exchange biased FeMn/Co bilayer confirms the AF nature of the FeMn in this thickness regime.Comment: 6 pages, 5 figures, accepted for Phys. Rev.
    corecore