69 research outputs found

    Dimensional Effects on Densities of States and Interactions in Nanostructures

    Get PDF
    We consider electrons in the presence of interfaces with different effective electron mass, and electromagnetic fields in the presence of a high-permittivity interface in bulk material. The equations of motion for these dimensionally hybrid systems yield analytic expressions for Green’s functions and electromagnetic potentials that interpolate between the two-dimensional logarithmic potential at short distance, and the three-dimensional r−1 potential at large distance. This also yields results for electron densities of states which interpolate between the well-known two-dimensional and three-dimensional formulas. The transition length scales for interfaces of thickness L are found to be of order Lm/2m* for an interface in which electrons move with effective mass m*, and for a dielectric thin film with permittivity in a bulk of permittivity . We can easily test the merits of the formalism by comparing the calculated electromagnetic potential with the infinite series solutions from image charges. This confirms that the dimensionally hybrid models are excellent approximations for distances r ≳ L/2

    Spin-dephasing anisotropy for electrons in a diffusive quasi-1D GaAs wire

    Get PDF
    We present a numerical study of dephasing of electron spin ensembles in a diffusive quasi-one-dimensional GaAs wire due to the D'yakonov-Perel' spin-dephasing mechanism. For widths of the wire below the spin precession length and for equal strength of Rashba and linear Dresselhaus spin-orbit fields a strong suppression of spin-dephasing is found. This suppression of spin-dephasing shows a strong dependence on the wire orientation with respect to the crystal lattice. The relevance for realistic cases is evaluated by studying how this effect degrades for deviating strength of Rashba and linear Dresselhaus fields, and with the inclusion of the cubic Dresselhaus term

    Anomalous Rashba spin splitting in two-dimensional hole systems

    Full text link
    It has long been assumed that the inversion asymmetry-induced Rashba spin splitting in two-dimensional (2D) systems at zero magnetic field is proportional to the electric field that characterizes the inversion asymmetry of the confining potential. Here we demonstrate, both theoretically and experimentally, that 2D heavy hole systems in accumulation layer-like single heterostructures show the opposite behavior, i.e., a decreasing, but nonzero electric field results in an increasing Rashba coefficient.Comment: 4 pages, 3 figure

    Spin-Orbit Coupling and Time-Reversal Symmetry in Quantum Gates

    Full text link
    We study the effect of spin-orbit coupling on quantum gates produced by pulsing the exchange interaction between two single electron quantum dots. Spin-orbit coupling enters as a small spin precession when electrons tunnel between dots. For adiabatic pulses the resulting gate is described by a unitary operator acting on the four-dimensional Hilbert space of two qubits. If the precession axis is fixed, time-symmetric pulsing constrains the set of possible gates to those which, when combined with single qubit rotations, can be used in a simple CNOT construction. Deviations from time-symmetric pulsing spoil this construction. The effect of time asymmetry is studied by numerically integrating the Schr\"odinger equation using parameters appropriate for GaAs quantum dots. Deviations of the implemented gate from the desired form are shown to be proportional to dimensionless measures of both spin-orbit coupling and time asymmetry of the pulse.Comment: 10 pages, 3 figure

    Hall Coefficient in an Interacting Electron Gas

    Full text link
    The Hall conductivity in a weak homogeneous magnetic field, ωcτâ‰Ș1\omega_{c}\tau \ll 1, is calculated. We have shown that to leading order in 1/Ï”Fτ1/\epsilon_{F}\tau the Hall coefficient RHR_{H} is not renormalized by the electron-electron interaction. Our result explains the experimentally observed stability of the Hall coefficient in a dilute electron gas not too close to the metal-insulator transition. We avoid the currently used procedure that introduces an artificial spatial modulation of the magnetic field. The problem of the Hall effect is reformulated in a way such that the magnetic flux associated with the scattering process becomes the central element of the calculation.Comment: 23 pages, 15 figure

    Spin-orbit coupling and intrinsic spin mixing in quantum dots

    Full text link
    Spin-orbit coupling effects are studied in quantum dots in InSb, a narrow-gap material. Competition between different Rashba and Dresselhaus terms is shown to produce wholesale changes in the spectrum. The large (and negative) gg-factor and the Rashba field produce states where spin is no longer a good quantum number and intrinsic flips occur at moderate magnetic fields. For dots with two electrons, a singlet-triplet mixing occurs in the ground state, with observable signatures in intraband FIR absorption, and possible importance in quantum computation.Comment: REVTEX4 text with 3 figures (high resolution figs available by request). Submitted to PR

    Magnetotunneling Between Two-dimensional Electron Gases in InAs-AlSb-GaSb Heterostructures

    Get PDF
    We have observed that the tunneling magnetoconductance between two-dimensional (2D) electron gases formed at nominally identical InAs-AlSb interfaces most often exhibits two sets of Shubnikov-de Haas oscillations with almost the same frequency. This result is explained quantitatively with a model of the conductance in which the 2D gases have different densities and can tunnel between Landau levels with different quantum indices. When the epitaxial growth conditions of the interfaces are optimized, the zero-bias magnetoconductance shows a single set of oscillations, thus proving that the asymmetry between the two electron gases can be eliminated.Comment: RevTeX format including 4 figures; submit for publicatio

    Spin Precession and Oscillations in Mesoscopic Systems

    Full text link
    We compare and contrast magneto-transport oscillations in the fully quantum (single-electron coherent) and classical limits for a simple but illustrative model. In particular, we study the induced magnetization and spin current in a two-terminal double-barrier structure with an applied Zeeman field between the barriers and spin disequilibrium in the contacts. Classically, the spin current shows strong tunneling resonances due to spin precession in the region between the two barriers. However, these oscillations are distinguishable from those in the fully coherent case, for which a proper treatment of the electron phase is required. We explain the differences in terms of the presence or absence of coherent multiple wave reflections.Comment: 9 pages, 5 figure

    Spin Accumulation in Quantum Wires with Strong Rashba Spin-Orbit Coupling

    Full text link
    We present analytical and numerical results for the effect of Rashba spin-orbit coupling on band structure, transport, and interaction effects in quantum wires when the spin precession length is comparable to the wire width. In contrast to the weak-coupling case, no common spin-quantization axis can be defined for eigenstates within a single-electron band. The situation with only the lowest spin-split subbands occupied is particularly interesting because electrons close to Fermi points of the same chirality can have approximately parallel spins. We discuss consequences for spin-dependent transport and effective Tomonaga-Luttinger descriptions of interactions in the quantum wire.Comment: 4 pages, 4 figures, expanded discussion of spin accumulatio

    Spin dynamics in high-mobility two-dimensional electron systems

    Full text link
    Understanding the spin dynamics in semiconductor heterostructures is highly important for future semiconductor spintronic devices. In high-mobility two-dimensional electron systems (2DES), the spin lifetime strongly depends on the initial degree of spin polarization due to the electron-electron interaction. The Hartree-Fock (HF) term of the Coulomb interaction acts like an effective out-of-plane magnetic field and thus reduces the spin-flip rate. By time-resolved Faraday rotation (TRFR) techniques, we demonstrate that the spin lifetime is increased by an order of magnitude as the initial spin polarization degree is raised from the low-polarization limit to several percent. We perform control experiments to decouple the excitation density in the sample from the spin polarization degree and investigate the interplay of the internal HF field and an external perpendicular magnetic field. The lifetime of spins oriented in the plane of a [001]-grown 2DES is strongly anisotropic if the Rashba and Dresselhaus spin-orbit fields are of the same order of magnitude. This anisotropy, which stems from the interference of the Rashba and the Dresselhaus spin-orbit fields, is highly density-dependent: as the electron density is increased, the kubic Dresselhaus term becomes dominant and reduces the anisotropy.Comment: 13 pages, 6 figure
    • 

    corecore