12,900 research outputs found

    Dynamical Electron Mass in a Strong Magnetic Field

    Get PDF
    Motivated by recent interest in understanding properties of strongly magnetized matter, we study the dynamical electron mass generated through approximate chiral symmetry breaking in QED in a strong magnetic field. We reliably calculate the dynamical electron mass by numerically solving the nonperturbative Schwinger-Dyson equations in a consistent truncation within the lowest Landau level approximation. It is shown that the generation of dynamical electron mass in a strong magnetic field is significantly enhanced by the perturbative electron mass that explicitly breaks chiral symmetry in the absence of a magnetic field.Comment: 5 pages, 1 figure, published versio

    Microscopic theory of the low frequency Raman modes in germanium nanocrystals

    Get PDF
    We have studied the Raman intensities of low-frequency phonon modes in germanium (Ge) nanocrystals (NC) with varying sizes by using a microscopic valence force field model. The results are compared with the predictions of the continuum model of Lamb using a projection method. We found that the l=0 spheroidal Lamb modes are Raman active in the parallel polarization scattering geometry, while the l=2 spheroidal Lamb modes are active in the crossed polarization geometry. This result agrees with the group theory prediction that the torsional Lamb modes are not Raman active, but is in disagreement with the identification of torsional Lamb modes in the crossed polarization Raman spectra of NC suggested by many authors

    Robust image matching algorithm using SIFT on multiple layered strategies

    Get PDF
    As for the unsatisfactory accuracy caused by SIFT (scale-invariant feature transform) in complicated image matching, a novel matching method on multiple layered strategies is proposed in this paper. Firstly, the coarse data sets are filtered by Euclidean distance. Next, geometric feature consistency constraint is adopted to refine the corresponding feature points, discarding the points with uncoordinated slope values. Thirdly, scale and orientation clustering constraint method is proposed to precisely choose the matching points. The scale and orientation differences are employed as the elements of -means clustering in the method. Thus, two sets of feature points and the refined data set are obtained. Finally, 3 * delta rule of the refined data set is used to search all the remaining points. Our multiple layered strategies make full use of feature constraint rules to improve the matching accuracy of SIFT algorithm. The proposed matching method is compared to the traditional SIFT descriptor in various tests. The experimental results show that the proposed method outperforms the traditional SIFT algorithm with respect to correction ratio and repeatability.Yong Chen, Lei Shang and Eric H

    Towards geometric control of max-plus linear systems with applications to manufacturing systems

    Get PDF
    The max-plus linear systems have been studied for almost three decades, however, a well-established system theory on such specific systems is still an on-going research. The geometric control theory in particular was proposed as the future direction for max-plus linear systems by Cohen et al. This paper reports upon recent investigations on the disturbance decoupling problem for max-plus linear systems, which is the standard geometric control problem originated by W. M. Wonham. Different concepts of the disturbance decoupling problem are introduced, as well as the corresponding solvability conditions and controller synthesis procedures. The main results can be used in manufacturing systems, queueing networks, and power system networks for fault detection and system breakdown prevention

    Localization from connectivity in sensor networks

    Full text link
    • …
    corecore