1,970 research outputs found

    Finite Generation of Canonical Ring by Analytic Method

    Full text link
    In the 80th birthday conference for Professor LU Qikeng in June 2006 I gave a talk on the analytic approach to the finite generation of the canonical ring for a compact complex algebraic manifold of general type. This article is my contribution to the proceedings of that conference from my talk. In this article I give an overview of the analytic proof and focus on explaining how the analytic method handles the problem of infinite number of interminable blow-ups in the intuitive approach to prove the finite generation of the canonical ring. The proceedings of the LU Qikeng conference will appear as Issue No. 4 of Volume 51 of Science in China Series A: Mathematics (www.springer.com/math/applications/journal/11425)

    Effective algebraic degeneracy

    Full text link
    We prove that any nonconstant entire holomorphic curve from the complex line C into a projective algebraic hypersurface X = X^n in P^{n+1}(C) of arbitrary dimension n (at least 2) must be algebraically degenerate provided X is generic if its degree d = deg(X) satisfies the effective lower bound: d larger than or equal to n^{{(n+1)}^{n+5}}

    Banach Analytic Sets and a Non-Linear Version of the Levi Extension Theorem

    Full text link
    We prove a certain non-linear version of the Levi extension theorem for meromorphic functions. This means that the meromorphic function in question is supposed to be extendable along a sequence of complex curves, which are arbitrary, not necessarily straight lines. Moreover, these curves are not supposed to belong to any finite dimensional analytic family. The conclusion of our theorem is that nevertheless the function in question meromorphically extends along an (infinite dimensional) analytic family of complex curves and its domain of existence is a pinched domain filled in by this analytic family.Comment: 19 pages, This is the final version with significant corrections and improvements. To appear in Arkiv f\"or matemati

    Bilateral Anterior Shoulder Dislocation

    Get PDF
    Introduction: Unilateral anterior shoulder dislocation is one of the most common problems encountered in orthopedic practice. However, simultaneous bilateral anterior dislocation of the shoulders is quite rare. Case Presentation: We report a case of a 75-year-old woman presented with simultaneous bilateral anterior shoulder dislocation following a trauma, complicated with a traction injury to the posterior cord of the brachial plexus. Conclusions: Bilateral anterior shoulder dislocation is very rare. The excessive traction force during closed reduction may lead to nerve palsy. Clear documentation of neurovascular status and adequate imaging before and after a reduction should be performed

    The range of the tangential Cauchy-Riemann system on a CR embedded manifold

    Full text link
    We prove that every compact, pseudoconvex, orientable, CR manifold of \C^n, bounds a complex manifold in the C∞C^\infty sense. In particular, the tangential Cauchy-Riemann system has closed range

    Section Extension from Hyperbolic Geometry of Punctured Disk and Holomorphic Family of Flat Bundles

    Full text link
    The construction of sections of bundles with prescribed jet values plays a fundamental role in problems of algebraic and complex geometry. When the jet values are prescribed on a positive dimensional subvariety, it is handled by theorems of Ohsawa-Takegoshi type which give extension of line bundle valued square-integrable top-degree holomorphic forms from the fiber at the origin of a family of complex manifolds over the open unit 1-disk when the curvature of the metric of line bundle is semipositive. We prove here an extension result when the curvature of the line bundle is only semipositive on each fiber with negativity on the total space assumed bounded from below and the connection of the metric locally bounded, if a square-integrable extension is known to be possible over a double point at the origin. It is a Hensel-lemma-type result analogous to Artin's application of the generalized implicit function theorem to the theory of obstruction in deformation theory. The motivation is the need in the abundance conjecture to construct pluricanonical sections from flatly twisted pluricanonical sections. We also give here a new approach to the original theorem of Ohsawa-Takegoshi by using the hyperbolic geometry of the punctured open unit 1-disk to reduce the original theorem of Ohsawa-Takegoshi to a simple application of the standard method of constructing holomorphic functions by solving the d-bar equation with cut-off functions and additional blowup weight functions

    Local syzygies of multiplier ideals

    Full text link
    In recent years, multiplier ideals have found many applications in local and global algebraic geometry. Because of their importance, there has been some interest in the question of which ideals on a smooth complex variety can be realized as multiplier ideals. Other than integral closure no local obstructions have been known up to now, and in dimension two it was established by Favre-Jonsson and Lipman-Watanabe that any integrally closed ideal is locally a multiplier ideal. We prove the somewhat unexpected result that multiplier ideals in fact satisfy some rather strong algebraic properties involving higher syzygies. It follows that in dimensions three and higher, multiplier ideals are very special among all integrally closed ideals.Comment: 8 page
    • …
    corecore