15,296 research outputs found
The Dropping of In-Medium Hadron Mass in Holographic QCD
We study the baryon density dependence of the vector meson spectrum using the
D4/D6 system together with the compact D4 baryon vertex. We find that the
vector meson mass decreases almost linearly in density at low density for small
quark mass, but saturates to a finite non-zero value for large density. We also
compute the density dependence of the mass and the
velocity. We find that in medium, our model is consistent with the GMOR
relation up to a few times the normal nuclear density. We compare our hQCD
predictions with predictions made based on hidden local gauge theory that is
constructed to model QCD.Comment: 20 pages, 7 figure
Charge ordering in theta-(BEDT-TTF)_2 X materials
We investigate theoretically charge ordered states on the anisotropic
triangular lattice characteristic of the theta-(BEDT-TTF)_2 X materials. Using
exact diagonalization studies, we establish that the charge order (CO) pattern
corresponds to a ``horizontal'' stripe structure, with ...1100... CO along the
two directions with larger electron hopping (p-directions), and ...1010... CO
along the third direction (c-direction). The CO is accompanied by co-operative
bond dimerizations along all three directions in the highest spin state. In the
lowest spin state bonds along the p-directions are tetramerized. Our theory
explains the occurence of a charge-induced high temperature transition as well
as a spin gap transition at lower temperature.Comment: 4 pages, 4 eps figures, uses jpsj2.cl
Cardiovascular Disease Associated with Occupational and Leisure-Time Activity: The Physical Activity Health Paradox in the United States
Click the PDF icon to download the abstract
Nonlinear Conduction by Melting of Stripe-Type Charge Order in Organic Conductors with Triangular Lattices
We theoretically discuss the mechanism for the peculiar nonlinear conduction
in quasi-two-dimensional organic conductors \theta-(BEDT-TTF)2X
[BEDT-TTF=bis(ethylenedithio)tetrathiafulvalene] through the melting of
stripe-type charge order. An extended Peierls-Hubbard model attached to
metallic electrodes is investigated by a nonequilibrium Green's function
technique. A novel current-voltage characteristic appears in a coexistent state
of stripe-type and nonstripe 3-fold charge orders, where the applied bias melts
mainly the stripe-type charge order through the reduction of lattice
distortion, whereas the 3-fold charge order survives. These contrastive
responses of the two different charge orders are consistent with the
experimental observations.Comment: 5 pages, 4 figures, to appear in J. Phys. Soc. Jp
Finite-Temperature Properties across the Charge Ordering Transition -- Combined Bosonization, Renormalization Group, and Numerical Methods
We theoretically describe the charge ordering (CO) metal-insulator transition
based on a quasi-one-dimensional extended Hubbard model, and investigate the
finite temperature () properties across the transition temperature, . In order to calculate dependence of physical quantities such as the
spin susceptibility and the electrical resistivity, both above and below
, a theoretical scheme is developed which combines analytical
methods with numerical calculations. We take advantage of the renormalization
group equations derived from the effective bosonized Hamiltonian, where Lanczos
exact diagonalization data are chosen as initial parameters, while the CO order
parameter at finite- is determined by quantum Monte Carlo simulations. The
results show that the spin susceptibility does not show a steep singularity at
, and it slightly increases compared to the case without CO because
of the suppression of the spin velocity. In contrast, the resistivity exhibits
a sudden increase at , below which a characteristic dependence
is observed. We also compare our results with experiments on molecular
conductors as well as transition metal oxides showing CO.Comment: 9 pages, 8 figure
Epitaxial growth and the magnetic properties of orthorhombic YTiO3 thin films
High-quality YTiO3 thin films were grown on LaAlO3 (110) substrates at low
oxygen pressures (<10-8 Torr) using pulsed laser deposition. The in-plane
asymmetric atomic arrangements at the substrate surface allowed us to grow
epitaxial YTiO3 thin films, which have an orthorhombic crystal structure with
quite different a- and b-axes lattice constants. The YTiO3 film exhibited a
clear ferromagnetic transition at 30 K with a saturation magnetization of about
0.7 uB/Ti. The magnetic easy axis was found to be along the [1-10] direction of
the substrate, which differs from the single crystal easy axis direction, i.e.,
[001].Comment: 14 pages, 4 figure
Growth Dynamics of Photoinduced Domains in Two-Dimensional Charge-Ordered Conductors Depending on Stabilization Mechanisms
Photoinduced melting of horizontal-stripe charge orders in
quasi-two-dimensional organic conductors
\theta-(BEDT-TTF)2RbZn(SCN)4[BEDT-TTF=bis(ethylenedithio)tetrathiafulvalene]
and
\alpha-(BEDT-TTF)2I3 is investigated theoretically. By numerically solving
the time-dependent Schr\"odinger equation, we study the photoinduced dynamics
in extended Peierls-Hubbard models on anisotropic triangular lattices within
the
Hartree-Fock approximation. The melting of the charge order needs more energy
for \theta-(BEDT-TTF)2RbZn(SCN)4 than for \alpha-(BEDT-TTF)2I3, which is a
consequence of the larger stabilization energy in \theta-(BEDT-TTF)2RbZn(SCN)4.
After local photoexcitation in the charge ordered states, the growth of a
photoinduced domain shows anisotropy. In \theta-(BEDT-TTF)2RbZn(SCN)4, the
domain hardly expands to the direction perpendicular to the horizontal-stripes.
This is because all the molecules on the hole-rich stripe are rotated in one
direction and those on the hole-poor stripe in the other direction. They
modulate horizontally connected transfer integrals homogeneously, stabilizing
the charge order stripe by stripe. In \alpha-(BEDT-TTF)2I3, lattice distortions
locally stabilize the charge order so that it is easily weakened by local
photoexcitation. The photoinduced domain indeed expands in the plane. These
results are consistent with recent observation by femtosecond reflection
spectroscopy.Comment: 9 pages, 8 figures, to appear in J. Phys. Soc. Jpn. Vol. 79 (2010)
No.
Charge Ordering in Organic ET Compounds
The charge ordering phenomena in quasi two-dimensional 1/4-filled organic
compounds (ET)_2X (ET=BEDT-TTF) are investigated theoretically for the
and -type structures, based on the Hartree approximation for the
extended Hubbard models with both on-site and intersite Coulomb interactions.
It is found that charge ordered states of stripe-type are stabilized for the
relevant values of Coulomb energies, while the spatial pattern of the stripes
sensitively depends on the anisotropy of the models. By comparing the results
of calculations with the experimental facts, where the effects of quantum
fluctuation is incorporated by mapping the stripe-type charge ordered states to
the S=1/2 Heisenberg Hamiltonians, the actual charge patterns in the insulating
phases of -(ET)_2MM'(SCN)_4 and -(ET)_2I_3 are deduced.
Furthermore, to obtain a unified view among the , and
-(ET)_2X families, the stability of the charge ordered state in
competition with the dimeric antiferromagnetic state viewed as the Mott
insulating state, which is typically realized in -type compounds, and
with the paramagnetic metallic state, is also pursued by extracting essential
parameters.Comment: 35 pages, 27 figures, submitted to J. Phys. Soc. Jp
Multi-Orbital Molecular Compound (TTM-TTP)I_3: Effective Model and Fragment Decomposition
The electronic structure of the molecular compound (TTM-TTP)I_3, which
exhibits a peculiar intra-molecular charge ordering, has been studied using
multi-configuration ab initio calculations. First we derive an effective
Hubbard-type model based on the molecular orbitals (MOs) of TTM-TTP; we set up
a two-orbital Hamiltonian for the two MOs near the Fermi energy and determine
its full parameters: the transfer integrals, the Coulomb and exchange
interactions. The tight-binding band structure obtained from these transfer
integrals is consistent with the result of the direct band calculation based on
density functional theory. Then, by decomposing the frontier MOs into two
parts, i.e., fragments, we find that the stacked TTM-TTP molecules can be
described by a two-leg ladder model, while the inter-fragment Coulomb energies
are scaled to the inverse of their distances. This result indicates that the
fragment picture that we proposed earlier [M.-L. Bonnet et al.: J. Chem. Phys.
132 (2010) 214705] successfully describes the low-energy properties of this
compound.Comment: 5 pages, 4 figures, published versio
Evidence of metallic clustering in annealed Ga1-xMnxAs from atypical scaling behavior of the anomalous Hall coefficient
We report on the anomalous Hall coefficient and longitudinal resistivity
scaling relationships on a series of annealed Ga1-xMnxAs epilayers (x~0.055).
As-grown samples exhibit scaling parameter n of ~ 1. Near the optimal annealing
temperature, we find n ~ 2 to be consistent with recent theories on the
intrinsic origins of anomalous Hall Effect in Ga1-xMnxAs. For annealing
temperatures far above the optimum, we note n > 3, similar behavior to certain
inhomogeneous systems. This observation of atypical behavior agrees well with
characteristic features attributable to spherical resonance from metallic
inclusions from optical spectroscopy measurements.Comment: 3 pages, 3 figure
- …