12,358 research outputs found

    Approximating the largest eigenvalue of network adjacency matrices

    Full text link
    The largest eigenvalue of the adjacency matrix of a network plays an important role in several network processes (e.g., synchronization of oscillators, percolation on directed networks, linear stability of equilibria of network coupled systems, etc.). In this paper we develop approximations to the largest eigenvalue of adjacency matrices and discuss the relationships between these approximations. Numerical experiments on simulated networks are used to test our results.Comment: 7 pages, 4 figure

    Comedia famosa. El mágico de Salerno : tercera parte / de Don Juan Salvo y Vela

    Get PDF
    Precede al tít.: "N. 283."Los datos de publicación tomados del colofónSign.: A-C4, D

    The onset of synchronization in large networks of coupled oscillators

    Full text link
    We study the transition from incoherence to coherence in large networks of coupled phase oscillators. We present various approximations that describe the behavior of an appropriately defined order parameter past the transition, and generalize recent results for the critical coupling strength. We find that, under appropriate conditions, the coupling strength at which the transition occurs is determined by the largest eigenvalue of the adjacency matrix. We show how, with an additional assumption, a mean field approximation recently proposed is recovered from our results. We test our theory with numerical simulations, and find that it describes the transition when our assumptions are satisfied. We find that our theory describes the transition well in situations in which the mean field approximation fails. We study the finite size effects caused by nodes with small degree and find that they cause the critical coupling strength to increase.Comment: To appear in PRE; Added an Appendix, a reference, modified two figures and improved the discussion of the range of validity of perturbative approache

    On the local existence of maximal slicings in spherically symmetric spacetimes

    Full text link
    In this talk we show that any spherically symmetric spacetime admits locally a maximal spacelike slicing. The above condition is reduced to solve a decoupled system of first order quasi-linear partial differential equations. The solution may be accomplished analytical or numerically. We provide a general procedure to construct such maximal slicings.Comment: 4 pages. Accepted for publication in Journal of Physics: Conference Series, Proceedings of the Spanish Relativity Meeting ERE200

    Twisted flux tube emergence from the convection zone to the corona

    Full text link
    3D numerical simulations of a horizontal magnetic flux tube emergence with different twist are carried out in a computational domain spanning the upper layers of the convection zone to the lower corona. We use the Oslo Staggered Code to solve the full MHD equations with non-grey and non-LTE radiative transfer and thermal conduction along the magnetic field lines. The emergence of the magnetic flux tube input at the bottom boundary into a weakly magnetized atmosphere is presented. The photospheric and chromospheric response is described with magnetograms, synthetic images and velocity field distributions. The emergence of a magnetic flux tube into such an atmosphere results in varied atmospheric responses. In the photosphere the granular size increases when the flux tube approaches from below. In the convective overshoot region some 200km above the photosphere adiabatic expansion produces cooling, darker regions with the structure of granulation cells. We also find collapsed granulation in the boundaries of the rising flux tube. Once the flux tube has crossed the photosphere, bright points related with concentrated magnetic field, vorticity, high vertical velocities and heating by compressed material are found at heights up to 500km above the photosphere. At greater heights in the magnetized chromosphere, the rising flux tube produces a cool, magnetized bubble that tends to expel the usual chromospheric oscillations. In addition the rising flux tube dramatically increases the chromospheric scale height, pushing the transition region and corona aside such that the chromosphere extends up to 6Mm above the photosphere. The emergence of magnetic flux tubes through the photosphere to the lower corona is a relatively slow process, taking of order 1 hour.Comment: 53 pages,79 figures, Submitted to Ap

    Gravitational Equilibrium in the Presence of a Positive Cosmological Constant

    Get PDF
    We reconsider the virial theorem in the presence of a positive cosmological constant Lambda. Assuming steady state, we derive an inequality of the form rho >= A (Lambda / 4 pi GN) for the mean density rho of the astrophysical object. With a minimum at Asphere = 2, its value can increase by several orders of magnitude as the shape of the object deviates from a spherically symmetric one. This, among others, indicates that flattened matter distributions like e.g. clusters or superclusters, with low density, cannot be in gravitational equilibrium.Comment: 7 pages, no figure

    Statistical Properties of Avalanches in Networks

    Full text link
    We characterize the distributions of size and duration of avalanches propagating in complex networks. By an avalanche we mean the sequence of events initiated by the externally stimulated `excitation' of a network node, which may, with some probability, then stimulate subsequent firings of the nodes to which it is connected, resulting in a cascade of firings. This type of process is relevant to a wide variety of situations, including neuroscience, cascading failures on electrical power grids, and epidemology. We find that the statistics of avalanches can be characterized in terms of the largest eigenvalue and corresponding eigenvector of an appropriate adjacency matrix which encodes the structure of the network. By using mean-field analyses, previous studies of avalanches in networks have not considered the effect of network structure on the distribution of size and duration of avalanches. Our results apply to individual networks (rather than network ensembles) and provide expressions for the distributions of size and duration of avalanches starting at particular nodes in the network. These findings might find application in the analysis of branching processes in networks, such as cascading power grid failures and critical brain dynamics. In particular, our results show that some experimental signatures of critical brain dynamics (i.e., power-law distributions of size and duration of neuronal avalanches), are robust to complex underlying network topologies.Comment: 11 pages, 7 figure

    Dynamics and Pattern Formation in Large Systems of Spatially-Coupled Oscillators with Finite Response Times

    Full text link
    We consider systems of many spatially distributed phase oscillators that interact with their neighbors. Each oscillator is allowed to have a different natural frequency, as well as a different response time to the signals it receives from other oscillators in its neighborhood. Using the ansatz of Ott and Antonsen (Ref. \cite{OA1}) and adopting a strategy similar to that employed in the recent work of Laing (Ref. \cite{Laing2}), we reduce the microscopic dynamics of these systems to a macroscopic partial-differential-equation description. Using this macroscopic formulation, we numerically find that finite oscillator response time leads to interesting spatio-temporal dynamical behaviors including propagating fronts, spots, target patterns, chimerae, spiral waves, etc., and we study interactions and evolutionary behaviors of these spatio-temporal patterns
    corecore