16,755 research outputs found

    Towards Quantitative Simulations of High Power Proton Cyclotrons

    Full text link
    PSI operates a cyclotron based high intensity proton accelerator routinely at an average beam power of 1.3MW. With this power the facility is at the worldwide forefront of high intensity proton accelerators. The beam current is practically limited by losses at extraction and the resulting activation of accelerator components. Further intensity upgrades and new projects aiming at an even higher average beam power, are only possible if the relative losses can be lowered in proportion, thus keeping absolute losses at a constant level. Maintaining beam losses at levels allowing hands-on maintenance is a primary challenge in any high power proton machine design and operation. In consequence, predicting beam halo at these levels is a great challenge and will be addressed in this paper. High power hadron driver have being used in many disciplines of science and, a growing interest in the cyclotron technology for high power hadron drivers are being observed very recently. This report will briefly introduce OPAL, a tool for precise beam dynamics simulations including 3D space charge. One of OPAL's flavors (OPAL-cycl) is dedicated to high power cyclotron modeling and is explained in greater detail. We then explain how to obtain initial conditions for our PSI Ring cyclotron which still delivers the world record in beam power of 1.3 MW continuous wave (cw). Several crucial steps are explained necessary to be able to predict tails at the level of 3\sigma ... 4\sigma in the PSI Ring cyclotron. We compare our results at the extraction with measurements, obtained with a 1.18 MW cw production beam. Based on measurement data, we develop a simple linear model to predict beam sizes of the extracted beam as a function of intensities and confirm the model with simulations.Comment: Corrections and new figur

    Investigating the Relation between Student Engagement and Attainment in a Flexible Learning Environment

    Get PDF
    The use of technology is increasingly adopted to support flexible learning in Higher Education institutions. The adoption of more sophisticated technologies offers a broad range of facilities for communication and resource sharing, thereby creating a flexible learning environment that facilitates and even encourages students not to physically attend classes. However this emerging trend seems to contradict class attendance requirements within universities, inevitably leading to a dilemma between amending traditional regulations and creating new policies for the higher education institutions. This study presents an investigation into student engagement in a technology enhanced/driven flexible environment along with its relationship to attainment. We propose an approach to modelling engagement from different perspectives in terms of indicators and then consider what impact these indicators have on student academic performance. We have carried out a case study on the relation between attendance and attainment in a flexible environment. Although our preliminary results show attendance is quantitatively correlated with successful student development and learning outcomes, our results also indicate there is a cohort that did not follow such a pattern. Nevertheless the preliminary results could provide an insight into pilot studies in the wider deployment of new technology to support flexible learning

    The Temporal and Spectral Characteristics of "Fast Rise and Exponential Decay" Gamma-Ray Burst Pulses

    Full text link
    In this paper we have analyzed the temporal and spectral behavior of 52 Fast Rise and Exponential Decay (FRED) pulses in 48 long-duration gamma-ray bursts (GRBs) observed by the CGRO/BATSE, using a pulse model with two shape parameters and the Band model with three shape parameters, respectively. It is found that these FRED pulses are distinguished both temporally and spectrally from those in long-lag pulses. Different from these long-lag pulses only one parameter pair indicates an evident correlation among the five parameters, which suggests that at least \sim4 parameters are needed to model burst temporal and spectral behavior. In addition, our studies reveal that these FRED pulses have correlated properties: (i) long-duration pulses have harder spectra and are less luminous than short-duration pulses; (ii) the more asymmetric the pulses are the steeper the evolutionary curves of the peak energy (EpE_{p}) in the νfν\nu f_{\nu} spectrum within pulse decay phase are. Our statistical results give some constrains on the current GRB models.Comment: 18 pages, 7 figures, accepted for publication in the Astrophysical Journa

    Application of the Preisach and Jiles–Atherton models to the simulation of hysteresis in soft magnetic alloys

    Get PDF
    his article describes the advances in unification of model descriptions of hysteresis in magnetic materials and demonstrates the equivalence of two widely accepted models, the Preisach (PM) and Jiles–Atherton (JA) models. Recently it was shown that starting from general energy relations, the JA equation for a loop branch can be derived from PM. The unified approach is here applied to the interpretation of magnetization measured in nonoriented Si–Fe steels with variable grain size ⟨s⟩, and also in as-cast and annealed Fe amorphous alloys. In the case of NO Fe–Si, the modeling parameter k defined by the volume density of pinning centers is such that k≈A+B/⟨s⟩, where the parameters A and B are related to magnetocrystalline anisotropy and grain texture. The value of k in the amorphous alloys can be used to estimate the microstructural correlation length playing the role of effective grain size in these materials

    Ages and Masses of 0.64 million Red Giant Branch stars from the LAMOST Galactic Spectroscopic Survey

    Full text link
    We present a catalog of stellar age and mass estimates for a sample of 640\,986 red giant branch (RGB) stars of the Galactic disk from the LAMOST Galactic Spectroscopic Survey (DR4). The RGB stars are distinguished from the red clump stars utilizing period spacing derived from the spectra with a machine learning method based on kernel principal component analysis (KPCA). Cross-validation suggests our method is capable of distinguishing RC from RGB stars with only 2 per cent contamination rate for stars with signal-to-noise ratio (SNR) higher than 50. The age and mass of these RGB stars are determined from their LAMOST spectra with KPCA method by taking the LAMOST - KeplerKepler giant stars having asteroseismic parameters and the LAMOST-TGAS sub-giant stars based on isochrones as training sets. Examinations suggest that the age and mass estimates of our RGB sample stars with SNR >> 30 have a median error of 30 per cent and 10 per cent, respectively. Stellar ages are found to exhibit positive vertical and negative radial gradients across the disk, and the age structure of the disk is strongly flared across the whole disk of 6<R<136<R<13\,kpc. The data set demonstrates good correlations among stellar age, [Fe/H] and [α\alpha/Fe]. There are two separate sequences in the [Fe/H] -- [α\alpha/Fe] plane: a high--α\alpha sequence with stars older than \sim\,8\,Gyr and a low--α\alpha sequence composed of stars with ages covering the whole range of possible ages of stars. We also examine relations between age and kinematic parameters derived from the Gaia DR2 parallax and proper motions. Both the median value and dispersion of the orbital eccentricity are found to increase with age. The vertical angular momentum is found to fairly smoothly decrease with age from 2 to 12\,Gyr, with a rate of about -50\,kpc\,km\,s1^{-1}\,Gyr1^{-1}. A full table of the catalog is public available online.Comment: 16 pages, 22 figures,accepted by MNRA

    Robustness and Enhancement of Neural Synchronization by Activity-Dependent Coupling

    Get PDF
    We study the synchronization of two model neurons coupled through a synapse having an activity-dependent strength. Our synapse follows the rules of Spike-Timing Dependent Plasticity (STDP). We show that this plasticity of the coupling between neurons produces enlarged frequency locking zones and results in synchronization that is more rapid and much more robust against noise than classical synchronization arising from connections with constant strength. We also present a simple discrete map model that demonstrates the generality of the phenomenon.Comment: 4 pages, accepted for publication in PR

    Wheat drought-responsive WXPL transcription factors regulate cuticle biosynthesis genes

    Get PDF
    Published online: 4 February 2017The cuticle forms a hydrophobic waxy layer that covers plant organs and provides protection from biotic and abiotic stresses. Transcription of genes responsible for cuticle formation is regulated by several types of transcription factors (TFs). Five orthologous to WAX PRODUCTION (WXP1 and WXP2) genes from Medicago truncatula were isolated from a cDNA library prepared from flag leaves and spikes of drought tolerant wheat (Triticum aestivum, breeding line RAC875) and designated TaWXP-like (TaWXPL) genes. Tissue-specific and drought-responsive expression of TaWXPL1D and TaWXPL2B was investigated by quantitative RT-PCR in two Australian wheat genotypes, RAC875 and Kukri, with contrasting glaucousness and drought tolerance. Rapid dehydration and/or slowly developing cyclic drought induced specific expression patterns of WXPL genes in flag leaves of the two cultivars RAC875 and Kukri. TaWXPL1D and TaWXPL2B proteins acted as transcriptional activators in yeast and in wheat cell cultures, and conserved sequences in their activation domains were localised at their C-termini. The involvement of wheat WXPL TFs in regulation of cuticle biosynthesis was confirmed by transient expression in wheat cells, using the promoters of wheat genes encoding two cuticle biosynthetic enzymes, the 3-ketoacyl-CoA-synthetase and the cytochrome P450 monooxygenase. Using the yeast 1-hybrid (Y1H) assay we also demonstrated the differential binding preferences of TaWXPL1D and TaWXPL2B towards three stress-related DNA cis-elements. Protein structural determinants underlying binding selectivity were revealed using comparative 3D molecular modelling of AP2 domains in complex with cis-elements. A scheme is proposed, which links the roles of WXPL and cuticle-related MYB TFs in regulation of genes responsible for the synthesis of cuticle components.Huihui Bi, Sukanya Luang, Yuan Li, Natalia Bazanova, Nikolai Borisjuk, Maria Hrmova, Sergiy Lopat

    Temperature dependence of interlayer coupling in perpendicular magnetic tunnel junctions with GdOx barriers

    Full text link
    Perpendicular magnetic tunnel junctions with GdOX tunneling barriers have shown a unique voltage controllable interlayer magnetic coupling effect. Here we investigate the quality of the GdOX barrier and the coupling mechanism in these junctions by examining the temperature dependence of the tunneling magnetoresistance and the interlayer coupling from room temperature down to 11 K. The barrier is shown to be of good quality with the spin independent conductance only contributing a small portion, 14%, to the total room temperature conductance, similar to AlOX and MgO barriers. The interlayer coupling, however, shows an anomalously strong temperature dependence including sign changes below 80 K. This non-trivial temperature dependence is not described by previous models of interlayer coupling and may be due to the large induced magnetic moment of the Gd ions in the barrier.Comment: 14 pages, 4 figure
    corecore