15,884 research outputs found

    Chemistry and mineralogy of clay minerals in Asian and Saharan dusts and the implications for iron supply to the oceans

    Get PDF
    Mineral dust supplied to remote ocean regions stimulates phytoplankton growth through delivery of micronutrients, notably iron (Fe). Although attention is usually paid to Fe (hydr)oxides as major sources of available Fe, Fe-bearing clay minerals are typically the dominant phase in mineral dust. The mineralogy and chemistry of clay minerals in dust particles, however, are largely unknown. We conducted microscopic identification and chemical analysis of the clay minerals in Asian and Saharan dust particles. Cross-sectional slices of dust particles were prepared by focused ion beam (FIB) techniques and analyzed by transmission electron microscopy (TEM) combined with energy dispersive X-ray spectroscopy (EDXS). TEM images of FIB slices revealed that clay minerals occurred as either nano-thin platelets or relatively thick plates. Chemical compositions and lattice fringes of the nano-thin platelets suggested that they included illite, smectite, illite–smectite mixed layers, and their nanoscale mixtures (illite–smectite series clay minerals, ISCMs) which could not be resolved with an electron microbeam. EDXS chemical analysis of the clay mineral grains revealed that the average Fe content was 5.8% in nano-thin ISCM platelets assuming 14% H2O, while the Fe content of illite and chlorite was 2.8 and 14.8%, respectively. In addition, TEM and EDXS analyses were performed on clay mineral grains dispersed and loaded on micro-grids. The average Fe content of clay mineral grains was 6.7 and 5.4% in Asian and Saharan dusts, respectively. A comparative X-ray diffraction analysis of bulk dusts showed that Saharan dust was more enriched in clay minerals than Asian dust, while Asian dust was more enriched in chlorite. Clay minerals, in particular nanocrystalline ISCMs and Fe-rich chlorite, are probably important sources of Fe to remote marine ecosystems. Further detailed analyses of the mineralogy and chemistry of clay minerals in global mineral dusts are required to evaluate the inputs of Fe to surface ocean microbial communities

    Slow relaxation in the Ising model on a small-world network with strong long-range interactions

    Full text link
    We consider the Ising model on a small-world network, where the long-range interaction strength J2J_2 is in general different from the local interaction strength J1J_1, and examine its relaxation behaviors as well as phase transitions. As J2/J1J_2/J_1 is raised from zero, the critical temperature also increases, manifesting contributions of long-range interactions to ordering. However, it becomes saturated eventually at large values of J2/J1J_2/J_1 and the system is found to display very slow relaxation, revealing that ordering dynamics is inhibited rather than facilitated by strong long-range interactions. To circumvent this problem, we propose a modified updating algorithm in Monte Carlo simulations, assisting the system to reach equilibrium quickly.Comment: 5 pages, 5 figure

    Correlated Photons from Collective Excitations of Three-Level Atomic Ensemble

    Full text link
    We systematically study the interaction between two quantized optical fields and a cyclic atomic ensemble driven by a classic optical field. This so-called atomic cyclic ensemble consists of three-level atoms with Delta-type transitions due to the symmetry breaking, which can also be implemented in the superconducting quantum circuit by Yu-xi Liu et al. [Phys. Rev. Lett. 95, 087001 (2005)]. We explore the dynamic mechanisms to creating the quantum entanglements among photon states, and between photons and atomic collective excitations by the coherent manipulation of the atom-photon system. It is shown that the quantum information can be completely transferred from one quantized optical mode to another, and the quantum information carried by the two quantized optical fields can be stored in the collective modes of this atomic ensemble by adiabatically controlling the classic field Rabi frequencies.Comment: 10 pages, 2 figure

    Fractional-submerged membrane distillation crystallizer (F-SMDC) for treatment of high salinity solution

    Full text link
    © 2018 Elsevier B.V. Membrane distillation with crystallization (MDC) is an attractive process for high saline seawater reverse osmosis (SWRO) brine treatment. MDC produces additional fresh water while simultaneously recovering valuable resources. This study developed a novel approach of fractional-submerged MDC (F-SMDC) process, in which MD and crystallizer are integrated in a feed tank with a submerged membrane. F-SMDC principle is based on the presence of temperature/concentration gradient (TG/CG) in the feed reactor. The operational conditions at the top portion of the feed reactor (higher temperature and lower feed concentration) was well suited for MD operation, while the bottom portion of the reactor (lower temperature and higher concentration) was favourable for crystal growth. F-SMDC performance with direct contact MD to treat brine and produce sodium sulfate (Na2SO4) crystals using TG/CG showed positive results. The TG/CG approach in F-SMDC enabled to achieve higher water recovery for brine treatment with a volume concentration factor (VCF) of over 3.5 compared to VCF of 2.9 with a conventional S-MDC set-up. Further, the high feed concentration and low temperature at the reactor bottom in F-SMDC enabled the formation of Na2SO4 crystals with narrow crystal size distribution

    Effect of chemical and physical factors on the crystallization of calcium sulfate in seawater reverse osmosis brine

    Full text link
    © 2017 Elsevier B.V. A major challenge of seawater reverse osmosis (SWRO) desalination process corresponds to the management of concentrated brine waste because discharging the brine back into the sea influences the marine ecosystem and incurs additional costs to plants. A membrane distillation crystallizer (MDC) can further produce clean water and simultaneously recover valuable resources from the concentrated brine; this is more environmentally and economically optimal. SWRO brine contains salts, which contribute to scaling development during the MDC operation. Hence, the main goals of this study was to observe the crystallization tendency of calcium sulfate (CaSO4) under high salinity and, to examine other inorganic and organic compounds and operational conditions that affect the CaSO4 crystallization. The crystallization tendency of CaSO4 in SWRO brine was examined with respect to different temperatures; changes in pH values; and in the presence of co-existing ions, chemical agents, and organic matters as well as physical factors. The results showed that the size and quantity of crystals formed increased at higher temperatures. Furthermore, an increase in the pH values increased the crystal size. At higher pH, the complexion of NaCl along with CaSO4 was created. Moreover, stirring enhanced CaSO4 crystal formation due to the kinetic mechanism

    Neutron-rich rare isotope production from projectile fission of heavy beams in the energy range of 20 MeV/nucleon

    Full text link
    We investigate the possibilities of producing neutron-rich nuclides in projectile fission of heavy beams in the energy range of 20 MeV/nucleon expected from low-energy facilities. We report our efforts to theoretically describe the reaction mechanism of projectile fission following a multinucleon transfer collision at this energy range. Our calculations are mainly based on a two-step approach: the dynamical stage of the collision is described with either the phenomenological Deep-Inelastic Transfer model (DIT), or with the microscopic Constrained Molecular Dynamics model (CoMD). The deexcitation/fission of the hot heavy projectile fragments is performed with the Statistical Mul- tifragmentation Model (SMM). We compared our model calculations with our previous experimental projectile-fission data of 238U (20 MeV/nucleon)+208Pb and 197Au (20 MeV/nucleon)+197Au and found an overall reasonable agreement. Our study suggests that projectile fission following periph- eral heavy-ion collisions at this energy range offers an effective route to access very neutron-rich rare isotopes toward and beyond the astrophysical r-process path

    Electromagnetic fields in a 3D cavity and in a waveguide with oscillating walls

    Get PDF
    We consider classical and quantum electromagnetic fields in a three-dimensional (3D) cavity and in a waveguide with oscillating boundaries of the frequency Ω\Omega . The photons created by the parametric resonance are distributed in the wave number space around Ω/2\Omega/2 along the axis of the oscillation. When classical waves propagate along the waveguide in the one direction, we observe the amplification of the original waves and another wave generation in the opposite direction by the oscillation of side walls. This can be understood as the classical counterpart of the photon production. In the case of two opposite walls oscillating with the same frequency but with a phase difference, the interferences are shown to occur due to the phase difference in the photon numbers and in the intensity of the generated waves.Comment: 8 pages revTeX including 1 eps fi

    Evidence of metallic clustering in annealed Ga1-xMnxAs from atypical scaling behavior of the anomalous Hall coefficient

    Get PDF
    We report on the anomalous Hall coefficient and longitudinal resistivity scaling relationships on a series of annealed Ga1-xMnxAs epilayers (x~0.055). As-grown samples exhibit scaling parameter n of ~ 1. Near the optimal annealing temperature, we find n ~ 2 to be consistent with recent theories on the intrinsic origins of anomalous Hall Effect in Ga1-xMnxAs. For annealing temperatures far above the optimum, we note n > 3, similar behavior to certain inhomogeneous systems. This observation of atypical behavior agrees well with characteristic features attributable to spherical resonance from metallic inclusions from optical spectroscopy measurements.Comment: 3 pages, 3 figure
    corecore