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Abstract. Mineral dust supplied to remote ocean regions

stimulates phytoplankton growth through delivery of mi-

cronutrients, notably iron (Fe). Although attention is usually

paid to Fe (hydr)oxides as major sources of available Fe,

Fe-bearing clay minerals are typically the dominant phase

in mineral dust. The mineralogy and chemistry of clay min-

erals in dust particles, however, are largely unknown. We

conducted microscopic identification and chemical analysis

of the clay minerals in Asian and Saharan dust particles.

Cross-sectional slices of dust particles were prepared by fo-

cused ion beam (FIB) techniques and analyzed by transmis-

sion electron microscopy (TEM) combined with energy dis-

persive X-ray spectroscopy (EDXS). TEM images of FIB

slices revealed that clay minerals occurred as either nano-

thin platelets or relatively thick plates. Chemical composi-

tions and lattice fringes of the nano-thin platelets suggested

that they included illite, smectite, illite–smectite mixed lay-

ers, and their nanoscale mixtures (illite–smectite series clay

minerals, ISCMs) which could not be resolved with an elec-

tron microbeam. EDXS chemical analysis of the clay min-

eral grains revealed that the average Fe content was 5.8 %

in nano-thin ISCM platelets assuming 14 % H2O, while the

Fe content of illite and chlorite was 2.8 and 14.8 %, respec-

tively. In addition, TEM and EDXS analyses were performed

on clay mineral grains dispersed and loaded on micro-grids.

The average Fe content of clay mineral grains was 6.7 and

5.4 % in Asian and Saharan dusts, respectively. A compara-

tive X-ray diffraction analysis of bulk dusts showed that Sa-

haran dust was more enriched in clay minerals than Asian

dust, while Asian dust was more enriched in chlorite. Clay

minerals, in particular nanocrystalline ISCMs and Fe-rich

chlorite, are probably important sources of Fe to remote ma-

rine ecosystems. Further detailed analyses of the mineralogy

and chemistry of clay minerals in global mineral dusts are re-

quired to evaluate the inputs of Fe to surface ocean microbial

communities.

1 Introduction

Primary productivity in high-nitrate low-chlorophyll

(HNLC) regions of the world’s ocean has been an important

topic because of the roles of this process in regulating

atmospheric carbon dioxide levels over glacial–interglacial

timescales (Boyd et al., 2000, 2004; Bopp et al., 2003;

Jickells et al., 2005; Formenti et al., 2011). Iron (Fe) is

a controlling micronutrient for phytoplankton growth in

HNLC regions, with deep winter mixing (Tagliabue et

al., 2010) and long-range transport of continental aerosols

(including mineral dust and anthropogenic aerosols) being

key Fe sources for surface water microbial communities.

In addition, the dust-derived Fe supply to low-nitrate

low-chlorophyll (LNLC) regions of the oceans has been

shown to control dinitrogen fixation (Moore et al., 2009;

Schlosser et al., 2014). Therefore, interest has grown in

recent years regarding atmospheric aerosol transport, inputs

to the surface ocean, and the subsequent dissolution of Fe

from aerosols (Desboeufs et al., 2001; Jickells and Spokes,

2001; Hand et al., 2004; Guieu et al., 2005; Meskhidze et

al., 2005; Baker and Jickells, 2006; Buck et al., 2006, 2010;

Cwiertny et al., 2008; Journet et al., 2008; Mahowald et al.,

2009; Shi et al., 2009, 2011; Aguilar-Islas et al., 2010; Baker

and Croot, 2010; Fu et al., 2010; Johnson et al., 2010; Paris
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et al., 2010; Trapp et al., 2010; Formenti et al., 2011; Rubin

et al., 2011; Takahashi et al., 2011; Sholkovitz et al., 2012).

Iron dissolution from aerosols has been represented by

fractional Fe solubility ( %FeS), and varies strongly depend-

ing on the aerosol source (Mahowald et al., 2005; Sholkovitz

et al., 2012). Sholkovitz et al. (2012) compiled total Fe load-

ing (FeT) and %FeS for a global-scale set of aerosol sam-

ples, and found a hyperbolic trend in the %FeS as a function

of FeT, which was explained by the mixing of mineral dusts

of high FeT and low %FeS and anthropogenic aerosols of

low FeT and high %FeS. However, mineral dust is an impor-

tant supply of bioavailable Fe to the remote ocean, particu-

larly during dust events originating from desert sources. Ito

and Feng (2010) demonstrated using model simulations that,

compared to Asian dust, soluble Fe from combustion sources

contributed a relatively small amount to the soluble Fe sup-

ply to the North Pacific Ocean during spring periods. An en-

hancement of dust %FeS occurs during long-range transport.

The factors responsible for this increase in %FeS are not yet

fully understood, and include the type of Fe-bearing miner-

als of dust and their reactivity (Cwiertny et al., 2008; Jour-

net et al., 2008), the photoreduction of Fe in dust particles

(Siefert et al., 1994; Hand et al., 2004; Fu et al., 2010), re-

actions between dust particles and water during cloud pro-

cessing (Desboeufs et al., 2001; Shi et al., 2009), reactions

with acidic gases in the atmosphere (Zhuang et al., 1992;

Meskhidze et al., 2003), and changes in particle size during

long-range transport (Jickells et al., 2005; Baker and Croot,

2010).

Information regarding dust mineralogy enables the %FeS

of mineral dust to be better understood, as highlighted by

Cwiertny et al. (2008) after an extensive literature review.

The mineralogical factors related to %FeS include solubility,

reactivity with atmospheric acids, grain size, Fe content, and

the Fe oxidation state of the minerals. Despite numerous ar-

ticles on the measurements of %FeS (Sholkovitz et al., 2012,

and references therein), the modeling of dust input (Ma-

howald et al., 2005, 2009; Johnson and Meskhidze, 2013),

and the determinations of the aqueous geochemistry of Fe

(Baker and Croot, 2010, and references therein), basic data

are still lacking on the properties of Fe-bearing minerals in

dust. Iron oxides/hydroxides are an important source of avail-

able Fe. However, the quantities of Fe (hydr)oxides in min-

eral dust are much lower than the quantity of Fe-bearing sili-

cates. Mineralogical analyses have shown that clay minerals

are the most abundant phases followed by quartz, feldspars,

and calcite in the long-range transported dusts (Glaccum and

Prospero, 1980; Avila et al., 1997; Jeong 2008; Jeong et al.,

2014). The crystal structures of clay minerals can accom-

modate a significant quantity of Fe in their octahedral sites.

Thus, both the clay minerals and Fe (hydr)oxides should be

considered when investigating their roles in Fe availability

(Raiswell and Canfield, 2012). Journet et al. (2008) reported

a higher Fe solubility of clay minerals compared with Fe ox-

ides, emphasizing the significant role of clay minerals in Fe

availability. However, in the experiments performed by Jour-

net et al. (2008), dissolution work was conducted for a lim-

ited set of clay minerals and Fe (hydr)oxides obtained from

rocks. Clay minerals in atmospheric dust particles have di-

verse origins and a wide range of chemical compositions

and particle sizes, depending upon the lithology, geologi-

cal setting, and physical/chemical weathering process in their

source regions. The contribution of clay minerals to Fe avail-

ability should be considered on the basis of the physical and

chemical characteristics of the different clay mineral types in

the natural dust. For example, the Fe content of clay minerals

in dust for modeling and dissolution experiments is typically

not known. The separate determination of the Fe content of

each clay mineral species is almost impossible for bulk dust

because of the agglomeration of many silicate mineral grains

(Falkovich et al., 2001; Shi et al., 2005; Jeong, 2008; Jeong

and Nousiainen, 2014; Jeong et al., 2014). This is in contrast

to the exact determination of Fe content in the form of Fe

(hydr)oxides using an established selective extraction proce-

dure, such as the method of Mehra and Jackson (1960). How-

ever, the chemical composition of submicron grains of clay

minerals can be determined by energy dispersive X-ray spec-

trometry (EDXS) of fluorescent X-ray induced by an elec-

tron microbeam. EDXS attached to a transmission electron

microscope (TEM) is an excellent technique for the chemi-

cal and physical characterization of individual clay mineral

grains.

In this study, we report the mineral species, nanoscopic

occurrence, and chemical compositions of the clay mineral

grains in individual Asian and Saharan dust particles ob-

tained by the combined application of TEM and EDXS.

Analyses of clay minerals mixed in particles were conducted

on cross-sectional slices of individual dust particles prepared

by focused ion beam (FIB) milling. Clay mineral grains

loaded on micro-grids by a conventional procedure were

also analyzed by TEM and EDXS. We furthermore present

the mineral compositions of bulk dusts obtained by X-ray

diffraction (XRD) analysis.

2 Dust samples and methods

Asian dust events were observed on 17 March 2009, 20

March 2010, 31 March 2012, and 18 March 2014 in the Re-

public of Korea. The dust outbreaks and subsequent migra-

tion of the Asian dusts were traced using dust index images

derived from satellite remote sensing, which indicated the

source of the four dust events in the Gobi desert of south-

ern Mongolia and northern China (30◦–46◦ N, 90◦–110◦ E)

and their migration to the east across the Republic of Ko-

rea. Details of the synoptic conditions during the dust out-

breaks and migration of these events were provided in Jeong

et al. (2014). The peak concentrations of particulate matter

less than 10 µm in diameter (PM10)were 428, 1788, 220, and
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378 µg m−3 in the 2009, 2010, 2012, and 2014 dust events,

respectively (Korea Meteorological Administration, 2014).

The Asian dusts were sampled using a Thermo Scien-

tific high-volume total suspended particulate (TSP) sampler

fitted with Pallflex teflon-coated borosilicate glass-fiber fil-

ters (8× 10 in.) or Whatman® No. 1441-866 cellulose filters.

The 2012 dust was sampled on a mountain peak at Deok-

jeok Island (190 m a.s.l., 37◦13′59′′ N, 126◦08′57′′ E) off the

western coast of the Republic of Korea for 24 h (09:00, 31

March–08:00, 1 April) at a flow rate of 250 L min−1. The

2009, 2010, and 2014 Asian dusts were sampled using the

same procedure on the roof of a four-story building at An-

dong National University (36◦32′34′′ N, 128◦47′56′′ E) over

a 12 h period (09:00–21:00, 17 March 2009, 20:00–08:00, 19

March 2010, and 10:00–22:00, 18 March 2014).

Saharan dust samples were collected at the Cape Verde At-

mospheric Observatory on the island of São Vicente, Cabo

Verde (16◦51′50′′ N, 24◦52′03′′W) in the eastern North At-

lantic Ocean. Dust was sampled on Sterlitech polypropylene

membrane filters (47 mm diameter, 0.4 µm pore size) using

a low-volume aerosol sampler installed at the top of a 30 m

tower in the period from 7 November 2007 to 14 March 2008

(Carpenter et al., 2010). The total volume of samples for the

individual filters ranged from 50 to 100 m3 at flow rates of

20–30 L min−1 for a period of 3–5 days.

X-ray diffraction (XRD) analysis was conducted to ob-

tain information on the mineral composition of bulk samples

using a Rigaku Ultima IV diffractometer. A portion of the

filter was cut and immersed in methanol in a 10 mL glass

vial. The filter was agitated in an ultrasonic bath to remove

dust particles from the filter. During the agitation, dust parti-

cles were disaggregated into clay minerals and other silicate

grains. The suspension was sieved through 270-mesh sieve

to remove cellulose fibers and dried on the glass plate. Then,

dust was collected by razor blade. Several milligrams of dust

samples (2–10 mg) were loaded on the 3 mm× 4 mm cavity

of an aluminum plate. The analytical conditions were 60 s of

counting per 0.03◦ step in the scan range of 3–65◦ 2θ , Cu

Kα radiation, and 45 kV/35 mA. Because the quantity of the

samples was small, the patterns obtained were not suitable

for precise quantification. Thus, the compositional analysis

was deemed semi-quantitative. Mineral compositions were

derived using a SIROQUANT software package (version 4).

Since intensity loss was significant in the lower angle region

due to the small sample size irradiated with X-rays, the high

angle region (24.5–65◦ 2θ) was used for the simulation of

the observed XRD pattern. After the XRD analysis of the

bulk dusts, the samples were subjected to ethylene glycol and

heat treatments for detailed identification of clay minerals.

The samples were wetted with water, smeared, and dried on

a glass slide, and subsequently treated with ethylene glycol

vapor at 60 ◦C in a desiccator for 2 days followed by heating

at 350 ◦C for 30 min.

Electron-transparent thin slices of dust particles (2009,

2012, and 2014 Asian dusts; 28–31 December, 2007, 18–23

January, 23–26 February, 29 February–4 March, 12–14

March, 2008 Saharan dusts) were prepared for TEM analysis

of clay minerals. Hereafter, the term “particle” refers to indi-

vidual solid objects suspended in the atmosphere, while the

term “grain” refers to the constituents of the particles. Thin

slices (ca. 100 nm in thickness) of about ca. 6 µm× 6 µm size

were cut from dust particles using a SII NanoTechnology

SMI3050TB and a JEOL JIB4601F FIB instrument for the

Asian and Saharan dusts. Prior to using the FIB, the dust par-

ticles were transferred onto adhesive carbon film and charac-

terized using a JEOL JSM 6700F field emission gun scanning

electron microscope (SEM) equipped with an Oxford EDXS

system at 5 kV acceleration voltage and 8 mm working dis-

tance after being coated with platinum for electrical conduc-

tivity. Dust particles were selected for FIB work on the ba-

sis of mineralogical characteristics identified by SEM-EDXS

analysis as reported in Jeong (2008) and Jeong et al. (2014).

Individual Asian dust particles could be selected and pre-

pared as thin slices by FIB milling because the particles were

sufficiently separated from each other on the filters. How-

ever, the Saharan dusts considered in this study were highly

concentrated and aggregated on the filters. Thus, the original

atmospheric particles for FIB milling could not be identified

with confidence. However, the purpose of the TEM analy-

sis undertaken in this study was not to reveal the structures

of individual original dust particles as reported by Jeong and

Nousiainen (2014), but to analyze the chemistry and miner-

alogy of clay mineral grains. Thus, we prepared thin slices

using FIB milling from the Saharan dust samples.

Clay-mineral grains loaded on micro-grids were also pre-

pared for investigation of Asian (2009, 2010, 2012, and

2014) and Saharan (7–9 November, 13–14 December, 28–31

December 2007, 18–23 January, 29 February–4 March,

12–14 March 2008) dust. The clay mineral grains suspended

in methanol were loaded on to 200-mesh Cu micro-grids cov-

ered with a carbon-coated lacey formvar support film by im-

mersing the micro-grids in the suspension with tweezers and

subsequent drying on filter paper. Every electron-transparent

grain encountered during the movement of stage was ana-

lyzed by EDXS.

The TEM instruments used in this study were a JEOL

JEM 2100F field emission gun STEM at 200 kV, a JEOL

JEM 3010 TEM for high-resolution imaging, and a JEOL

JEM 2010 TEM equipped with an Oxford ISIS EDXS sys-

tem. Minerals in the FIB slices were identified on the ba-

sis of lattice fringe images, electron diffraction, and EDXS.

General chemical formulas of minerals identified in this

study are given in the Supplement Table 1. Digital images

of the microstructures and lattice fringes were recorded us-

ing a Gatan digital camera and processed with a Gatan

DigitalMicrograph®. To obtain the elemental compositions

of clay minerals, the X-ray counts of Si, Al, Fe, Mg, Ti,

K, and Ca were converted to weight % (wt %) of the ele-

ments using the quantification procedures given by Cliff and

Lorimer (1975). The k-factors of the elements for the con-
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Figure 1. Occurrence of clay minerals in three Asian dust particles (a, b, c). Panel 1 in each particle consists of two SEM images of the

original particle (low and high magnifications). Panels 2 and 3 are TEM images of the cross-sectional FIB slice prepared from the particle in

panel 1.

version were obtained from an analysis of the FIB slices pre-

pared from biotite and plagioclase of known composition oc-

curring in the Palgongsan granite (Jeong, 2000).

TEM-EDXS analysis often requires a small beam size

down to ∼ 50 nm to determine the chemical composition of

clay minerals that are mixed with other minerals. The X-

ray generation volume is small due to the thin nature of the

FIB slices (∼ 100 nm) and small analysis area. High-quality

quantitative analysis requires at least 10 000 counts of each

peak for the ideal specimens of large thin and resistant phases

(Williams and Carter, 2009). However, such an ideal analyt-

ical condition was not obtained for the clay mineral grains,

which were very sensitive to the electron beam because of

their structural water, disorder, and nanocrystallinity. To min-

imize electron beam damage of the clay mineral grains, the

electron dose was reduced by setting the spot size to four.

X-rays of Si, Al, Fe, Mg, Ti, K, and Ca were counted for

100 s. For clay grains loaded on the micro-grids, 0.5–2 µm

grains produced sufficient X-ray photons for analysis, while

submicron thin clay grains (ca. < 0.5 µm) did not. The total

X-ray counts of those elements in ISIS EDXS system were

ca. 30 000 for the analysis of clay mineral grains loaded on

the grid, and ca. 15 000 for the analysis of FIB specimens.

The detection limits for these elements were ca. 0.1 wt %.

For Asian dust samples, we conducted 206 analyses of clay

minerals in the 50 FIB slices prepared from 50 dust particles,

and 514 analyses of clay mineral grains loaded on the micro-

grids. For Saharan dust, we conducted 116 analyses in the 10

FIB slices prepared from 10 particles, and 356 analyses of

clay mineral grains loaded on micro-grids. In the calculation

Atmos. Chem. Phys., 14, 12415–12428, 2014 www.atmos-chem-phys.net/14/12415/2014/
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of elemental wt %, the total H2O content of clay minerals was

assumed to be 14 wt %, which is the average H2O content of

illite and smectite provided in Table II and Table XXVII of

Weaver and Pollard (1975).

3 Results and discussion

3.1 Occurrence of clay minerals in dust particles

3.1.1 Asian dust

SEM images reveal micron-size platy grains of clay minerals

on the surface of Asian dust particles (Fig. 1a-1, b-1, and c-

1). TEM images of cross-sectional FIB slices show that clay

mineral plates coat the surface of quartz (Fig. 1a-2, a-3, b-2,

and b-3), or are agglomerated (Figs. 1c-2 and 3). Clay min-

eral grains were classified into two groups: (1) rather thick,

compact grains of illite (Fig. 1a-2, a-3, and b-2), chlorite

(Fig. 1b-2), and kaolinites (not shown here); and (2) loose

chaotic, sub-parallel nano-thin platelets (Fig. 1a-2, a-3, b-2,

b-3, c-2, and c-3), which display lattice fringes of ca. 1.0 nm

(Figs. 1b-3 and 1c-3) and contained the interlayer cations K

and Ca. The nano-thin platelets were arranged in sub-parallel

patterns to form a fine matrix with the inclusions of thick and

compact clay minerals (Fig. 1a-2, a-3, and b-2). The loose,

curved lattices (Fig. 1b-3 and c-3) of nano-thin plates are in

contrast to the compact, straight lattices of larger plates of

illite (Fig. 2a), chlorite (Fig. 2b), and kaolinite (Fig. 2c).

Larger compact grains of smectite were not found in the

TEM observations of FIB slices in this study. However,

smectite has previously been identified by the XRD analy-

sis of Asian dust treated with ethylene glycol (Jeong, 2008).

Thus, smectite is expected to be present in the form of

nano-thin platelets of smectite or illite–smectite mixed lay-

ers. Nano-thin clay mineral platelets displaying 10 Å lattice

fringes were the major form of the clay minerals in the Asian

dusts. Their varying K and Ca contents suggest a close mix-

ture and mixed-layering of illite and smectite because K is

predominantly assigned to the cation fixed in the interlayer

of illite, while Ca is assigned to the exchangeable cation

of smectite (Jeong et al., 2004). The mixtures and mixed-

layering of illite and smectite unit layers are common in nat-

ural geological environments as a result of chemical weath-

ering in soils and the low temperature diagenesis of sedi-

ments (Weaver, 1989; Środoń, 1999). However, even using

the lattice-fringe imaging, unambiguous distinction was not

possible between illite and smectite unit layers mixed at the

nano scale because hydrated smectite (unit layer thickness of

1.4–1.6 nm) had become dehydrated and had contracted to

a unit layer of ca. 1.0 nm thickness under the high vacuum

in the TEM chamber. Thus, the nanoscale mixtures of nano-

thin platelets with ca. 1.0 nm lattice fringes and containing K

and Ca in varying ratios are collectively referred to here as

illite–smectite series clay minerals (ISCMs) which are prob-

ably mixtures/mixed-layers of illite and smectite in varying

ratios. Although thick smectite grains were not observed, il-

lite occurred as thick compact grains (Fig. 1a-2, a-3, and b-2)

as well as nano-thin ISCMs. Chlorite also occurred as nano-

thin plates (Fig. 1b-3) in a close association with ISCMs.

TEM images of the clay mineral grains dispersed on

the micro-grids are presented in Fig. 3. Micron-size ISCM

plates have diffuse outlines and granular micro-textures due

to nano-size subgrains (Fig. 3a-1 and a-2), which are com-

pared to the sub-parallel group of nano-thin ISCM plates ob-

served in the cross-sectional FIB slices (Fig. 1). The electron

diffraction pattern shows turbostratic stacking of nano-size

subgrains (Fig. 3a-3). However, the discrete illite grain in

Fig. 2a-4 has a platy morphology with a clear grain bound-

ary similar to the large compact grains of discrete illite in

Fig. 1a-2, a-3, and b-2. The morphology and micro-textures

of kaolinite grains (Fig. 3a-5) are similar to those of ISCM

grains, with diffuse outlines and granular micro-textures due

to the nano-size subgrains. Weathered chlorite plates consist

partly of subgrains (Fig. 3b-6).

3.1.2 Saharan dust

The TEM images of FIB slices prepared from three clay-

rich particles are presented in Fig. 4. The particles are dense

(Figs. 4a-1) or porous (Figs. 4b-1 and c-1) agglomerates of

nano-thin platelets that are arranged in sub-parallel anasto-

mosing patterns (Fig. 4a-2, b-2, and c-2). Lattice fringes of

ca. 1 nm indicate the common occurrence of ISCMs (Fig. 4a-

3, b-3, and c-3). Larger compact grains of illite and chlorite

are found in the ISCM matrix (Figs. 5a). Compact dense bi-

otite grain grades to kaolinite as shown in Fig. 5b and c. Bi-

otite kaolinitization is a common process in the weathering

environment (Dong et al., 1998; Jeong, 2000; Jeong and Kim,

2003).

TEM images of the clay mineral grains dispersed on the

micro-grids show illite plates with clear outlines (Fig. 3b-

1) and ISCMs with diffuse outlines (Fig. 3b-2). The kaolin-

ite plates have a hexagonal shape (Fig. 3b-3), indicating the

higher crystallinity of kaolinite in Saharan dust, which is in

contrast to the irregular kaolinite plate with a diffuse outline

identified in Asian dust (Fig. 3a-5). Another feature of the

Saharan dust distinguishing it from the Asian dust is the oc-

currence of elongated grains of palygorskite (inset in Fig. 3b-

3).

3.2 Fe content of the clay minerals

3.2.1 Asian dust

EDXS analyses were carried out for two types of clay min-

erals identified from the TEM analysis of FIB slices: sub-

parallel groups of thin platelets and individual thick grains.

Undertaking EDXS analysis in a selective manner for each

nano-thin plate was impossible due to the limit of the mini-

www.atmos-chem-phys.net/14/12415/2014/ Atmos. Chem. Phys., 14, 12415–12428, 2014
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Figure 2. Straight and coherent lattice fringe images of larger compact grains of illite (a), chlorite (b), and kaolinite (c) in Asian dust particles.

TEM images of FIB slices.

Figure 3. TEM images of clay mineral grains loaded on the micro-grid. Clay mineral grains from Asian dusts, showing ISCM (panel 1),

discrete illite (panel 4), kaolinite (panel 5), and chlorite (panel 6) grains. Panel 2 was magnified from Panel 1. Panel 3 is an electron diffraction

pattern of the circled area in panel 2 (a). Clay mineral grains from Saharan dusts showing illite (panel 1), ISCM (panels 1 and 2), hexagonal

kaolinite (panel 3) and elongated palygorskite (panel 3) grains (b).

mum beam size (ca. 50 nm) and the low X-ray counts from

the reduced electron dose used to minimize damage by the

beam. The Fe content, assuming 14 wt % of H2O, was plot-

ted against K content (Fig. 6). The data points could be cate-

gorized into three groups. Group A is clustered in the region

bound by ca. 0.5–4.5 wt % K and ca. 2.5–10 wt % Fe. Group

A data were obtained mostly from the sub-parallel groups of

thin plates. Groups B and C contained data for thick grains:

Atmos. Chem. Phys., 14, 12415–12428, 2014 www.atmos-chem-phys.net/14/12415/2014/
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Figure 4. Occurrence of clay minerals in three clay-rich Saharan dust particles (a, b, c). Panel 1 in each particle is a low magnification TEM

image of the cross-sectional FIB slice prepared from the original particle. Panel 2 is a TEM image magnified from the TEM image in panel 1.

Panel 3 is the lattice fringe image.

(B) high K (ca. 4.5–8.5 wt %)–low Fe (ca. 0–6 wt %) and (C)

low K (ca. 0–3 wt %)–high Fe (ca. 10–26 wt %). The TEM-

EDXS data from the FIB slices of Asian dust particles are

summarized in Table 1.

Group A was considered to represent ISCMs

whose intermediate K content indicates a mixture

of nano-thin platelets of illite, smectite, and their

mixed-layers. The average ISCM composition of

group A is K0.25Ca0.09(Al1.28Fe3+
0.45Mg0.44Ti0.01)

(Al0.50Si3.50)O10(OH)2. The characterization of the

nanoscale mixing and mixed layering of the ISCMs can be

undertaken by TEM analysis of ISCMs treated with alkyl

ammonium ions, which selectively expand smectite layers

even under the high vacuum of the TEM chamber (Lagaly,

1994; Jeong et al., 2004). However, the method will require

further development before it can be applied to dust particles.

The group B was considered to represent discrete illite. The

average structural formula of discrete illite in dust particles is

K0.64Ca0.03(Al1.61Fe3+
0.22Mg0.22Ti0.01)(Al0.66Si3.34)O10(OH)2.

This formula of group B is consistent with values for the

reference illites retrieved from the literature (mean of

24 illite analyses in Table III, Weaver and Pollard,

1975; Table 1.7, Meunier and Velde, 2004) (Fig. 6).

The representative formula of reference illites reported

in the literature is K0.77Ca0.01(Al1.64Fe0.17Mg0.20Ti0.00)

(Al0.64Si3.36)O10(OH)2. The relative proportions of illite

and smectite components could be estimated from the K

contents, because K exists mostly as a fixed cation in the in-

terlayer of illite (Jeong et al., 2004). The relative proportion

of illite and smectite components in ISCMs is ca. 35 : 65

based on the K contents of the reference illite (0.77 K) and

ISCMs (0.25 K). The proportion of smectite components is

higher than that of the illite component in ISCMs. Group

C could be assigned to the chlorite or K-depleted biotite

(vermiculite or biotite–vermiculite mixed-layer) formed

during the weathering in the source soils. The average Fe

contents of the ISCMs (5.8 wt %, group A) are higher than

those of illite (2.8 wt %, group B) and lower than those
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12422 G. Y. Jeong and E. P. Achterberg: Chemistry and mineralogy of clay minerals in Asian and Saharan dusts

1 µm 50 nm

Kaolin
ite

Biotite

0.93 nm

c

Ill
ite C

h
lo

ri
te

IS
C

M
200 nm

b

a b

Biotite

Figure 5. Occurrence of larger compact grains of illite (a), chlorite (a), kaolinite (b, c), and biotite (b, c) in Saharan dust particles.

Table 1. Summary of average chemical compositions of clay mineral grains (wt %) analyzed by TEM EDXS. H2O content of the clay

minerals was assumed to be 14 %.

Asian dust Saharan dust

Micro-grid FIB FIB (group FIB (group FIB (group Micro-grid FIB

(whole) A, ISCMs) B, illite) C, chlorite)

n 514 206 140 27 21 356 116

Si 21.4 21.7 22.7 21.5 16.0 22.4 22.4

Al 10.7 11.5 11.1 14.0 9.6 11.9 12.9

Fe 6.7 6.5 5.8 2.8 14.8 5.4 4.8

Mg 2.7 2.8 2.5 1.2 6.6 2.5 2.1

Ti 0.2 0.1 0.1 0.1 0.1 0.2 0.1

K 3.9 2.4 2.2 5.8 0.9 2.2 1.9

Ca 0.7 0.7 0.8 0.3 0.3 0.5 0.8

of chlorite (14.8 wt %, group C) (Table 1). One data point

plotted near the origin (0 wt % of K and Fe) indicates the

presence of kaolinite. Only three kaolinites were analyzed

by EDXS, detecting no Fe.

The EDXS data for the clay mineral grains loaded on

the micro-grids, assuming 14 wt % of H2O, are presented

in Fig. 6 and Table 1. Unlike the grains in the FIB slices,

the EDXS analyses of the clay mineral grains on the micro-

grids could not distinguish between mineralogical types in

the mixture. However, the distribution pattern of the data is

consistent with that of the FIB slices (Fig. 6). The data in-

dicate a slightly higher K and Fe contents compared to the

data for FIB slice specimens. This was likely to have origi-

nated from the mixture of several clay mineral types in the

clay grains loaded on the micro-grids, while clay mineral

types could be identified in the FIB slice and separately an-

alyzed by EDXS. In addition, this analysis cannot avoid the

ultrafine grains of iron (hydr)oxide phases mixed in the clay

grain. Many data points were plotted on the regions of ISCMs

(n= 266, 52 %) and discrete illite (n= 132, 26 %), indicat-

ing that the clay minerals (< 2 µm) in the dusts were domi-

nated by ISCMs and discrete illite with a minor presence of

chlorite. The average Fe content of Asian dusts was 7.3 wt %

in 2009 (n= 159), 6.7 wt % in 2010 (n= 100), 6.5 wt % in

2012 (n= 105), and 6.1 wt % in 2014 (n= 150). The av-

erage Fe content of all the analyzed grains (n= 514) was

6.7 wt %. The average chemical composition of the whole

data set (n= 514) was Si 21.4, Al 10.7, Fe 6.7, Mg 2.7,

Ti 0.2, K 3.9, and Ca 0.7 wt % (Table 1). Clay mineral grains

from Chinese loess samples, which formed the deposits of

ancient Asian dust, were analyzed by the TEM-EDXS of

grains loaded on micro-grids (Jeong et al., 2008, 2011). The

average chemical composition of the clay minerals in loess

samples was Si 21.3, Al 12.3, Fe 6.1, Mg 2.7, Ti 0.1, K 2.6,

and Ca 0.5 wt %, which is remarkably consistent with the

composition of our Asian dust samples. Fe that is not incor-

porated in clay minerals is hosted in Fe (hydr)oxides such

as magnetite, goethite, and hematite, and coarse Fe-rich sili-

cate mineral grains such as amphibole, epidote, chlorite, and

biotite. Clay-size chlorite can be distinguished from coarse-

grained chlorite, as large flakes of chlorite exceeding 10 µm

in length are commonly found in Asian dust.

3.2.2 Saharan dust

EDXS data of clay mineral grains on the micro-grids

(n= 356) and FIB slices (n= 116) are presented in Fig. 6

and summarized in Table 1. The distribution patterns of data

show similarity to those of the Asian dust, indicating the

presence of ISCMs, discrete illite, and chlorite/biotite. A re-
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markable feature of the Saharan dust that differs from Asian

dust is that kaolinitic clay mineral grains are more abundant

in Saharan dust particles than in Asian dust particles, while

chloritic grains are more abundant in Asian dust (Fig. 6).

Thus, compared with the chemical composition of Asian

dust, Al was slightly enriched in Saharan dust, while Fe and

K were slightly depleted. 63 % (n= 225) of the clay mineral

grains on the micro-grid were ISCMs. The average chemical

composition of clay mineral grains from the whole data set

of micro-grid samples assuming 14 wt % of H2O is Si 22.4,

Al 11.9, Fe 5.4, Mg 2.5, Ti 0.2, K 2.2, and Ca 0.5 wt % (Ta-

ble 1). The average chemical composition of clay minerals in

Saharan dust is not very different from that in Asian dust. The

typical chemical composition of kaolinite is Al2Si2O5(OH)4,

but with some Fe replacing Al in octahedral sites. The aver-

age Fe content from the analyses of 14 kaolinite grains is

1.7 wt % in Saharan dust.

3.3 Mineralogical properties of bulk dust

Mineral compositions determined by XRD analysis are pre-

sented in Table 2. Due to the small quantity of samples

and low X-ray counts, the data in Table 2 are at best semi-

quantitative. However, mineralogical differences are evident
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between Asian and Saharan dusts. Although the quantity of

each mineral has a large uncertainty, the sum of the mineral

groups is more reliable. The mineral compositions of three

Asian dusts were compared to the compositions determined

by single particle analysis using SEM and EDXS (Table 2).

Despite the differences in analytical methods and their semi-

quantitative nature, the mineral compositions determined by

both methods were well matched, supporting the reliability

of the mineral composition data for small bulk dust samples

presented in this study. ISCMs and discrete thick illite grains

could not be distinguished in the XRD method adopted in this

study. Thus, sum of ISCMs and discrete illite is presented in

Table 2.

A common mineralogical feature in both Asian and Saha-

ran dusts is for the clay minerals to be dominated by ISCMs

and illite. This is consistent with TEM-EDXS analysis of

clay mineral grains on the micro-grids (Fig. 6). A higher total

clay mineral content is a strong mineralogical feature of Sa-

haran dusts, while the quartz and feldspar contents are higher

in Asian dust. Of the clay minerals, chlorite contents were

higher in Asian dusts, while kaolinite contents were higher

in Saharan dusts. XRD analysis of the preferentially oriented

specimens of both the Asian and Saharan dusts showed 17 Å

peaks of smectite. Although we did not undertake a quanti-

tative analysis, the shoulder near the 10.4 Å peak on the high

angle side of the illite (001) peak, which did not disappear

following heat treatment at 350 ◦C, indicated the occurrence

of palygorskite as reported by Avila et al. (1997).

4 Clay minerals as iron carrier

4.1 ISCMs

The TEM-EDXS analyses of FIB slices showed that the Fe

contents of ISCMs, illite, and chlorite in Asian dust particles

are 5.8, 2.8, and 14.8 %, respectively. Although the average

Fe content of ISCMs is lower than chlorite, it is much higher

than illite. The contribution of ISCMs to the Fe released by

dust is important compared with other clay minerals because

they are abundant clay minerals in both the Asian (52 %) and

Saharan (63 %) dusts, as shown in Table 1 and Fig. 6.

The dissolution of Fe from silicate minerals depends

largely upon physical and chemical factors such as the crys-

tal structure, Fe content, crystallinity, and the surface area of

the minerals (Lasaga, 1995; Nagy, 1995). ISCMs are nano-

thin illite, smectite, and mixed-layered illite–smectite. Thus,

the large surface area of Fe-rich ISCMs may lead to an en-

hanced release of Fe. Baker and Jickells (2006) suggested

that the primary control on Fe solubility is the ratio of sur-

face area to volume of dust particles, which decreases during

long-range transport due to the preferential removal of larger

particles. Our observations confirm the importance of smaller

particles, and in particular probably the higher ISCM content

of long-range transported particles, which may make a large

contribution to Fe release.

4.2 Chlorite

Chlorite has received little attention in previous studies. Fe-

rich chlorite is easily decomposed by acids (Ross, 1969; Ko-

dama and Schnitzer, 1973; Brandt et al., 2003; Lowson et al.,

2005). In Chinese loess, chlorite is weathered much faster

than other silicate minerals (Jeong et al., 2011). Chlorite

should be considered in studies of Fe dissolution from min-

eral dust. Chlorite content of Asian dusts was ca. 4–6 % as

determined using single particle analysis (Jeong et al., 2014)

and 5–7 % in XRD analysis (this study). In Saharan dusts,

the chlorite content was lower at ca. 3 % as determined by

XRD analysis (this study). Although the chlorite content in

dust is much lower in comparison to ISCMs, the release of

Fe from chlorite is likely to be significant because its Fe

content is 3–6 times higher than in the ISCMs and illite.

Takahashi et al. (2011) suggested that chlorite could possi-

bly be transformed into soluble ferrihydrite after cloud pro-

cessing during long-range atmospheric transport. Although

we did not determine the oxidation state of Fe, the structural

Fe present in chlorite is known to be dominated by Fe(II)

(Newman, 1987). In contrast, the structural Fe in the fine IS-

CMs (dioctahedral illite, smectite, and their mixed layers) is

dominated by Fe(III) (Weaver and Pollard, 1975; Newman,

1987). Thus, trioctahedral clay minerals including chlorite

may be an important source of soluble Fe(II). Whilst Fe(II)

is a bioavailable form of Fe for microbial organisms (Shaked

et al., 2005; Baker and Croot, 2010), its concentration is low

due to rapid oxidation to Fe(III) and low supply rates. Mi-

croorganisms therefore have a range of alternative Fe uptake

strategies (e.g., Rubin et al., 2011). Fe(II) dissolved from dust

is commonly considered to be derived from the photochemi-

cal reduction of Fe(III). However, Cwiertny et al. (2008) sug-

gested that Fe(II)-substituted aluminosilicates may be an im-

portant alternative source of soluble Fe(II), particularly after

the reaction of dust with atmospheric acids. Chlorite grains

occur in a diverse size range, from individual large flaky par-

ticles of several micrometers (Jeong, 2008; Jeong and Nou-

siainen, 2014) to nano-thin platelets mixed with nano-thin

ISCMs (Fig. 2b-3). Nano-thin chlorite plates are probably

most effective in releasing Fe from dust particles following

reaction with atmospheric acids.

5 Implications to the evaluation of iron supply to oceans

Global dust distributions and oceanic Fe deposition are mod-

eled assuming the Fe content of bulk dust being equivalent to

the average Fe content of the Earth crust (3.5 %) (Mahowald

et al., 2005, 2009). A recent modeling study on Fe supply

to the oceans progressed to include dust mineralogy and Fe

content of clay minerals (Johnson and Meskhidze, 2013).
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Table 2. Semi-quantitative mineral compositions (wt %) of Asian and Saharan dusts determined by XRD analysis with mineral compositions

of Asian dusts determined by SEM single particle analysis for comparison.

Asian dust XRD Saharan dust XRD

18 Mar 31 Mar 20 Mar 16–17 Average 18–23 28–31 Average

2014 2012 2010 Mar 2009 Jan 2008 Dec 2007

ISCMs/illite 60 42 50 42 49 71 74 72

Kaolinite 1 3 4 4 3 8 4 6

Chlorite 3 6 7 7 6 3 3 3

Total clay 64 52 61 53 57 81 81 81

Quartz 14 23 15 13 16 10 7 8

Plagioclase 11 15 10 12 12 2 2 2

K-feldspar 0 6 2 1 2 1 1 1

Amphibole 0 1 2 2 1 0 0 0

Calcite 5 2 5 6 5 2 3 2

Gypsum 6 2 6 13 6 4 6 5

Total 100 100 100 100 100 100 100 100

SEM single particle analysis

(Jeong et al., 2014, and this study)*

ISCMs/illite 54 48 54 52

Kaolinite 1 3 2 2

Chlorite 2 4 6 4

Total clay 58 55 62 58

Quartz 19 21 17 19

Plagioclase 11 11 10 11

K-feldspar 4 5 3 4

Amphibole 1 1 0 1

Calcite 7 7 6 7

Gypsum 0 1 1 1

Total 100 100 100 100

* Mineral compositions were recalculated to include nine minerals and mineral groups. The contents of biotite and muscovite in Jeong et

al. (2014) were merged with that of ISCMs/illite.

Mineral compositions were predicted from available soil data

(Claquin et al., 1999; Nikovic et al., 2012; Journet et al.,

2014). However, mineralogical and chemical compositions

of world soils are certainly variable and poorly constrained.

In particular, the analytical data on the chemical composition

(including Fe) of fine clay minerals in local soils are hard to

find in literature because the analytical measurements are as

difficult as the analysis of clay minerals in dust. The mod-

eling study on the Fe supply to global oceans by Johnson

and Meskhidze (2013) highlighted the importance of miner-

alogical data of dust in the deposition of dissolved Fe to the

global oceans. They adopted mineral compositions of dust

derived from a soil database of Nikovic et al. (2012) and Fe

content of a commercial illite reported by Paris et al. (2011).

However, their model sensitivity analysis showed large vari-

ations of dissolved Fe fluxes to the oceans, associated with

the uncertainty in the dust mineralogy and Fe content of con-

stituent minerals. They emphasized that realistic data of dust

mineralogy and Fe content within individual Fe-containing

minerals are essential for the improvement of the descrip-

tion of the Fe biogeochemical cycles in climate models. Al-

though the chemical analysis of clay minerals in individual

dust particles as carried out in this study is challenging, de-

tailed analysis of representative global dust samples is likely

an efficient approach for obtaining information on Fe min-

eralogy in dust. Long-range transported dust has the average

mineralogical and chemical properties of fine soil particles

lifted from the wide source regions of varying soil mineral-

ogy. In addition, the mineral composition and chemistry in

dust from the major source regions do not show significant

inter-event and annual changes (Jeong, 2008). Further analyt-

ical works for dust samples transported over long distances

from major source regions will allow the establishment of re-

alistic mineralogical database for the evaluation of Fe inputs

to the remote ocean.
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6 Summary and conclusions

Mineral composition of bulk dust samples, Fe content of con-

stituent minerals, and their grain sizes form essential data for

the evaluation of Fe supply to remote surface oceans. Partic-

ularly, the properties of clay minerals are important because

of their abundance in mineral dust and high Fe contents, rel-

ative to other silicates. We presented for the first time miner-

alogical and chemical data of clay minerals in individual dust

particles from several Asian and Saharan dust samples, fol-

lowing analyses by TEM and EDXS. The total clay content

of Asian dusts determined by XRD analysis was lower than

that of Saharan dusts. TEM analysis of thin cross-sectional

slices of the dust particles revealed that nano-thin platelets

of ISCMs (illite, smectite, and illite–smectite mixed layers)

were most abundant in association with illite, chlorite, and

kaolinite occurring as thicker plates. Asian dusts were en-

riched with chlorite relative to Saharan dust, while Saharan

dusts were relatively enriched with kaolinite. Kaolinite in Sa-

haran dust occurred as hexagonal plates that were better crys-

tallized than in Asian dust. The average Fe content of the

ISCMs in Asian dusts as determined by EDXS was 5.8 %

assuming 14 % H2O, while the contents of illite and chlo-

rite were 2.8 and 14.8 %, respectively. The average Fe con-

tent of the EDXS data of the clay mineral grains dispersed

and loaded on the micro-grids was 6.7 and 5.4 % in Asian

and Saharan dusts, respectively. The Fe dissolution from clay

minerals is thought to be enhanced by the nanocrystallinity

of ISCMs; furthermore, Fe-rich chlorite susceptible to acids

may enhance dissolution of Fe. The establishment of realistic

mineralogical data sets from global dust samples is important

to reduce the uncertainty in the prediction of iron inputs to

oceans using geochemical and meteorological models.

The Supplement related to this article is available online

at doi:10.5194/acp-14-12415-2014-supplement.
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