20,544 research outputs found

    Coherent Beam-Beam Tune Shift of Unsymmetrical Beam-Beam Interactions with Large Beam-Beam Parameter

    Full text link
    Coherent beam-beam tune shift of unsymmetrical beam-beam interactions was studied experimentally and numerically in HERA where the lepton beam has a very large beam-beam parameter (up to Îľy=0.272\xi_y=0.272). Unlike the symmetrical case of beam-beam interactions, the ratio of the coherent and incoherent beam-beam tune shift in this unsymmetrical case of beam-beam interactions was found to decrease monotonically with increase of the beam-beam parameter. The results of self-consistent beam-beam simulation, the linearized Vlasov equation, and the rigid-beam model were compared with the experimental measurement. It was found that the coherent beam-beam tune shifts measured in the experiment and calculated in the simulation agree remarkably well but they are much smaller than those calculated by the linearized Vlasov equation with the single-mode approximation or the rigid-beam model. The study indicated that the single-mode approximation in the linearization of Vlasov equation is not valid in the case of unsymmetrical beam-beam interactions. The rigid-beam model is valid only with a small beam-beam parameter in the case of unsymmetrical beam-beam interactions.Comment: 32 pages, 13 figure

    Toolbox for entanglement detection and fidelity estimation

    Full text link
    The determination of the state fidelity and the detection of entanglement are fundamental problems in quantum information experiments. We investigate how these goals can be achieved with a minimal effort. We show that the fidelity of GHZ and W states can be determined with an effort increasing only linearly with the number of qubits. We also present simple and robust methods for other states, such as cluster states and states in decoherence-free subspaces.Comment: 5 pages, no figures, v3: final version, to appear as a Rapid Communication in PR

    On the Classical W4(2)W_{4}^{(2)} Algebra

    Full text link
    We consider the classical \w42 algebra from the integrable system viewpoint. The integrable evolution equations associated with the \w42 algebra are constructed and the Miura maps , consequently modifications, are presented. Modifying the Miura maps, we give a free field realization the classical \w42 algebra. We also construct the Toda type integrable systems for it.Comment: 14 pages, latex, no figure

    Spin-Hall effect on edge magnetization and electric conductance of a 2D semiconductor strip

    Full text link
    The intrinsic spin-Hall effect on spin accumulation and electric conductance in a diffusive regime of a 2D electron gas has been studied for a 2D strip of a finite width. It is shown that the spin polarization near the flanks of the strip, as well as the electric current in the longitudinal direction exhibit damped oscillations as a function of the width and strength of the Dresselhaus spin-orbit interaction. Cubic terms of this interaction are crucial for spin accumulation near the edges. As expected, no effect on the spin accumulation and electric conductance have been found in case of Rashba spin-orbit interaction.Comment: 4 pages, 1 figure, some changes in the tex

    On the Evolution of Ion Bunch Profile in the Presence of Longitudinal Coherent Electron Cooling

    Get PDF
    In the presence of longitudinal coherent electron cooling, the evolution of the line-density profile of a circulating ion bunch can be described by the 1-D Fokker-Planck equation. We show that, in the absence of diffusion, the 1-D equation can be solved analytically for certain dependence of cooling force on the synchrotron amplitude. For more general cases with arbitrary diffusion, we solved the 1-D Fokker-Planck equation numerically and the numerical solutions have been compared with results from macro-particle tracking

    Mechanisms for electron transport in atomic-scale one-dimensional wires: soliton and polaron effects

    Full text link
    We study one-electron tunneling through atomic-scale one-dimensional wires in the presence of coherent electron-phonon (e-ph) coupling. We use a full quantum model for the e-ph interaction within the wire with open boundary conditions. We illustrate the mechanisms of transport in the context of molecular wires subject to boundary conditions imposing the presence of a soliton defect in the molecule. Competition between polarons and solitons in the coherent transport is examined. The transport mechanisms proposed are generally applicable to other one-dimensional nanoscale systems with strong e-ph coupling.Comment: 7 pages, 4 figures, accepted for publication in Europhys. Let
    • …
    corecore