393 research outputs found

    Taxation and stability in cooperative games

    No full text
    Cooperative games are a useful framework for modeling multi-agent behavior in environments where agents must collaborate in order to complete tasks. Having jointly completed a task and generated revenue, agents need to agree on some reasonable method of sharing their profits. One particularly appealing family of payoff divisions is the core, which consists of all coalitionally rational (or, stable) payoff divisions. Unfortunately, it is often the case that the core of a game is empty, i.e. there is no payoff scheme guaranteeing each group of agents a total payoff higher than what they can get on their own. As stability is a highly attractive property, there have been various methods of achieving it proposed in the literature. One natural way of stabilizing a game is via taxation, i.e. reducing the value of some coalitions in order to decrease their bargaining power. Existing taxation methods include the ε-core, the least-core and several others. However, taxing coalitions is in general undesirable: one would not wish to overly tamper with a given coalitional game, or overly tax the agents. Thus, in this work we study minimal taxation policies, i.e. those minimizing the amount of tax required in order to stabilize a given game. We show that games that minimize the total tax are to some extent a linear approximation of the original games, and explore their properties. We demonstrate connections between the minimal tax and the cost of stability, and characterize the types of games for which it is possible to obtain a tax-minimizing policy using variants of notion of the ε-core, as well as those for which it is possible to do so using reliability extensions. Copyright © 2013, International Foundation for Autonomous Agents and Multiagent Systems (www.ifaamas.org). All rights reserved

    A Numerical Model for Brownian Particles Fluctuating in Incompressible Fluids

    Full text link
    We present a numerical method that consistently implements thermal fluctuations and hydrodynamic interactions to the motion of Brownian particles dispersed in incompressible host fluids. In this method, the thermal fluctuations are introduced as random forces acting on the Brownian particles. The hydrodynamic interactions are introduced by directly resolving the fluid motions with the particle motion as a boundary condition to be satisfied. The validity of the method has been examined carefully by comparing the present numerical results with the fluctuation-dissipation theorem whose analytical form is known for dispersions of a single spherical particle. Simulations are then performed for more complicated systems, such as a dispersion composed of many spherical particles and a single polymeric chain in a solvent.Comment: 6 pages, 8 figure

    Molecular brakes regulating mTORC1 activation in skeletal muscle following synergist ablation

    Get PDF
    The goal of the current work was to profile positive (mTORC1 activation, autocrine/paracrine growth factors) and negative [AMPK, unfolded protein response (UPR)] pathways that might regulate overload-induced mTORC1 (mTOR complex 1) activation with the hypothesis that a number of negative regulators of mTORC1 will be engaged during a supraphysiological model of hypertrophy. To achieve this, mTORC1- IRS-1/2 signaling, BiP/CHOP/IRE1, and AMPK activation were determined in rat plantaris muscle following synergist ablation (SA). SA resulted in significant increases in muscle mass of 4% per day throughout the 21 days of the experiment. The expression of the insulin-like growth factors (IGF) were high throughout the 21st day of overload. However, IGF signaling was limited, since IRS-1 and -2 were undetectable in the overloaded muscle from day 3 to day 9. The decreases in IRS-1/2 protein were paralleled by increases in GRB10 Ser501/503 and S6K1 Thr389 phosphorylation, two mTORC1 targets that can destabilize IRS proteins. PKB Ser473 phosphorylation was higher from 3– 6 days, and this was associated with increased TSC2 Thr939 phosphorylation. The phosphorylation of TSC2 Thr1345 (an AMPK site) was also elevated, whereas phosphorylation at the other PKB site, Thr1462, was unchanged at 6 days. In agreement with the phosphorylation of Thr1345, SA led to activation of AMPK1 during the initial growth phase, lasting the first 9 days before returning to baseline by day 12. The UPR markers CHOP and BiP were elevated over the first 12 days following ablation, whereas IRE1 levels decreased. These data suggest that during supraphysiological muscle loading at least three potential molecular brakes engage to downregulate mTORC1. m

    Simulating (electro)hydrodynamic effects in colloidal dispersions: smoothed profile method

    Full text link
    Previously, we have proposed a direct simulation scheme for colloidal dispersions in a Newtonian solvent [Phys.Rev.E 71,036707 (2005)]. An improved formulation called the ``Smoothed Profile (SP) method'' is presented here in which simultaneous time-marching is used for the host fluid and colloids. The SP method is a direct numerical simulation of particulate flows and provides a coupling scheme between the continuum fluid dynamics and rigid-body dynamics through utilization of a smoothed profile for the colloidal particles. Moreover, the improved formulation includes an extension to incorporate multi-component fluids, allowing systems such as charged colloids in electrolyte solutions to be studied. The dynamics of the colloidal dispersions are solved with the same computational cost as required for solving non-particulate flows. Numerical results which assess the hydrodynamic interactions of colloidal dispersions are presented to validate the SP method. The SP method is not restricted to particular constitutive models of the host fluids and can hence be applied to colloidal dispersions in complex fluids

    OPA1 and cardiolipin team up for mitochondrial fusion

    Get PDF
    Fusion between the inner membranes of two mitochondria requires the GTPase optic atrophy 1 (OPA1), but the molecular mechanism is poorly understood. A study now shows that fusion of two liposomes can be performed by OPA1 tethered to just one liposome, through an interaction with the phospholipid cardiolipin on the opposing liposome

    Religious Styles Predict Interreligious Prejudice: A Study of German Adolescents with the Religious Schema Scale

    Get PDF
    Streib H, Klein C. Religious Styles Predict Interreligious Prejudice: A Study of German Adolescents with the Religious Schema Scale. International Journal for the Psychology of Religion. 2014;24(2):151-163.Based on a sample of 340 German adolescents age 12 to 25, this article presents an analysis of the effects of religion on two instances of interreligious prejudice: anti-Islamic and anti-Semitic prejudice. Reflecting the emergent interest in implementing a perspective of religious maturity and religious development into research on religion and prejudice, the present study has included the Religious Schema Scale (RSS) which, with its three subscales, Truth of Texts & Teachings (ttt), Fairness, Tolerance & Rational Choice (ftr), and Xenosophia/Interreligious Dialog (xenos), differentiates religious styles. Regression analyses indicate the superior explanatory power of the RSS in comparison to other measures of religiosity. The RSS subscale ttt relates to and predicts anti-Islamic and anti-Semitic prejudice, whereas ftr and xenos relate to and predict disagreement with interreligious prejudice. Results of an analysis of variance using high agreement on ttt, ftr, and xenos for group construction indicate a decrease in interreligious prejudice in relation to religious development

    A combinatorial extracellular matrix platform identifies cell-extracellular matrix interactions that correlate with metastasis

    Get PDF
    Extracellular matrix interactions have essential roles in normal physiology and many pathological processes. Although the importance of extracellular matrix interactions in metastasis is well documented, systematic approaches to identify their roles in distinct stages of tumorigenesis have not been described. Here we report a novel-screening platform capable of measuring phenotypic responses to combinations of extracellular matrix molecules. Using a genetic mouse model of lung adenocarcinoma, we measure the extracellular matrix-dependent adhesion of tumour-derived cells. Hierarchical clustering of the adhesion profiles differentiates metastatic cell lines from primary tumour lines. Furthermore, we uncovered that metastatic cells selectively associate with fibronectin when in combination with galectin-3, galectin-8 or laminin. We show that these molecules correlate with human disease and that their interactions are mediated in part by α3β1 integrin. Thus, our platform allowed us to interrogate interactions between metastatic cells and their microenvironments, and identified extracellular matrix and integrin interactions that could serve as therapeutic targets.National Institutes of Health (U.S.) (Grant K99-CA151968)National Institutes of Health (U.S.). Ruth L. Kirschstein National Research Service AwardStand Up To Cancer (SU2C/AACR)David H. Koch Institute for Integrative Cancer Research at MIT (CTC Project)Harvard Stem Cell Institute (SG-0046-08-00)National Cancer Center (Postdoctoral Fellowship)National Cancer Institute (U.S.) (U54CA126515)National Cancer Institute (U.S.) (U54CA112967)Howard Hughes Medical InstituteMassachusetts Institute of Technology. Ludwig Center for Molecular Oncolog
    corecore