10,602 research outputs found

    Captures of Hot and Warm Sterile Antineutrino Dark Matter on EC-decaying Ho-163 Nuclei

    Full text link
    Capturing low-energy electron antineutrinos on radioactive Ho-163 nuclei, which decay into Dy-163 via electron capture (EC), is a noteworthy opportunity to detect relic sterile antineutrinos. Such hypothetical particles are more or less implied by current experimental and cosmological data, and they might be a part of hot dark matter or a candidate for warm dark matter in the Universe. Using the isotope Ho-163 as a target and assuming reasonable active-sterile antineutrino mixing angles, we calculate the capture rate of relic electron antineutrinos against the corresponding EC-decay background in the presence of sterile antineutrinos at the sub-eV or keV mass scale. We show that the signature of hot or warm sterile antineutrino dark matter should in principle be observable, provided the target is big enough and the energy resolution is good enough.Comment: 16 pages, 6 figures, more discussions and references added. To appear in JCA

    Is the σ\sigma meson dynamically generated?

    Full text link
    We study the problem whether the σ\sigma meson is generated `dynamically'. A pedagogical analysis on the toy O(N) linear sigma model is performed and we find that the large NcN_c limit and the mσ→∞m_\sigma\to \infty limit does not commute. The sigma meson may not necessarily be described as a dynamically generated resonance. On the contrary, the sigma meson may be more appropriately described by considering it as an explicit degree of freedom in the effective lagrangian.Comment: Contribution to ``Quark Confinement and Hadron Spectrum VII'', 2--7 Sept. 2006, Ponta Delgada, Acores, Portuga

    Is the f0(600)f_0(600) meson a dynamically generated resonance? -- a lesson learned from the O(N) model and beyond

    Get PDF
    O(N) linear σ\sigma model is solvable in the large NN limit and hence provides a useful theoretical laboratory to test various unitarization approximations. We find that the large NcN_c limit and the mσ→∞m_\sigma\to \infty limit do not commute. In order to get the correct large NcN_c spectrum one has to firstly take the large NcN_c limit. We argue that the f0(600)f_0(600) meson may not be described as generated dynamically. On the contrary, it is most appropriately described at the same level as the pions, i.e, both appear explicitly in the effective lagrangian. Actually it is very likely the σ\sigma meson responsible for the spontaneous chiral symmetry breaking in a lagrangian with linearly realized chiral symmetry.Comment: 15 pages, 3 figurs; references added; discussions slightly modified; revised version accepted by IJMP

    Gene Co-expression Network and Copy Number Variation Analyses Identify Transcription Factors Associated With Multiple Myeloma Progression

    Get PDF
    Multiple myeloma (MM) has two clinical precursor stages of disease: monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM). However, the mechanism of progression is not well understood. Because gene co-expression network analysis is a well-known method for discovering new gene functions and regulatory relationships, we utilized this framework to conduct differential co-expression analysis to identify interesting transcription factors (TFs) in two publicly available datasets. We then used copy number variation (CNV) data from a third public dataset to validate these TFs. First, we identified co-expressed gene modules in two publicly available datasets each containing three conditions: normal, MGUS, and SMM. These modules were assessed for condition-specific gene expression, and then enrichment analysis was conducted on condition-specific modules to identify their biological function and upstream TFs. TFs were assessed for differential gene expression between normal and MM precursors, then validated with CNV analysis to identify candidate genes. Functional enrichment analysis reaffirmed known functional categories in MM pathology, the main one relating to immune function. Enrichment analysis revealed a handful of differentially expressed TFs between normal and either MGUS or SMM in gene expression and/or CNV. Overall, we identified four genes of interest (MAX, TCF4, ZNF148, and ZNF281) that aid in our understanding of MM initiation and progression

    Oscillation Phenomena in the disk around the massive black hole Sagittarius A*

    Full text link
    We report the detection of radio QPOs with structure changes using the Very Long Baseline Array (VLBA) at 43 GHz. We found conspicuous patterned changes of the structure with P = 16.8 +- 1.4, 22.2 +- 1.4, 31.2 +- 1.5, 56.4 +- 6 min, very roughly in a 3:4:6:10 ratio. The first two periods show a rotating one-arm structure, while the P = 31.4 min shows a rotating 3-arm structure, as if viewed edge-on. At the central 50 microasec the P = 56.4 min period shows a double amplitude variation of those in its surroundings. Spatial distributions of the oscillation periods suggest that the disk of SgrA* is roughly edge-on, rotating around an axis with PA = -10 degree. Presumably, the observed VLBI images of SgrA* at 43 GHz retain several features of the black hole accretion disk of SgrA* in spite of being obscured and broadened by scattering of surrounding plasma.Comment: 24 pages, 20 figures, revised version submitted to MN main journal (2010, Jan., 12th

    The B\to D_s^{(*)}\eta^{(\prime)} decays in the perturbative QCD

    Full text link
    In this paper, we calculate the branching ratios for B+→Ds+η,B+→Ds+η′B^+\to D_s^+\eta, B^+\to D_s^+\eta^{\prime}, B+→Ds∗+ηB^+\to D_s^{*+}\eta and B+→Ds∗+η′ B^+\to D_s^{*+}\eta^{\prime} decays by employing the perturbative QCD (pQCD) factorization approach. Under the two kinds of η−η′\eta-\eta^{\prime} mixing schemes, the quark-flavor mixing scheme and the singlet-octet mixing scheme, we find that the calculated branching ratios are consistent with the currently available experimental upper limits. We also considered the so called "fDsf_{D_s} puzzle", by using two groups of parameters about the Ds(∗)D^{(*)}_s meson decay constants, that is fDs=241f_{D_s}=241 MeV, fDs∗=272f_{D^*_s}=272 MeV and fDs=274f_{D_s}=274 MeV, fDs∗=312f_{D^*_s}=312 MeV, to calculate the branching ratios for the considered decays. We find that the results change 30%30\% by using these two different groups of paramters.Comment: 12 pages, 1 figure. Typos removed, minor correction
    • …
    corecore