10,156 research outputs found

    Light-Cone Distribution Amplitudes for Heavy-Quark Hadrons

    Full text link
    We construct parametrizations of light-cone distribution amplitudes (LCDAs) for B-mesons and Lambda_b-baryons that obey various theoretical constraints, and which are simple to use in factorization theorems relevant for phenomenological applications in heavy-flavour physics. In particular, we find the eigenfunctions of the Lange-Neubert renormalization kernel, which allow for a systematic implementation of renormalization-group evolution effects for both B-meson and \Lambda_b-baryon decays. We also present a new strategy to construct LCDA models from momentum-space projectors, which can be used to implement Wandzura-Wilczek--like relations, and which allow for a comparison with theoretical approaches that go beyond the collinear limit for the light-quark momenta in energetic heavy-hadron decays.Comment: 39 pages, 11 figure

    Citizen Science for Post-disaster Sustainable Community Development in Ecologically Fragile Regions - A Case from China

    Get PDF
    The world’s mountains host some of the most complex, dynamic, and diverse ecosystems and are also hotspots for natural disasters, such as earthquake, landslide and flood. One factor that limits the mountain communities to recover from disasters and pursue sustainable development is the lack of locally relevant scientific knowledge, which is hard to gain from global and regional scale observations and models. The rapid advances in ICT, computing, communication technologies and the emergence of citizen science is changing the situation. Here we report a case from Sichuan Giant Panda Sanctuary World Natural Heritage in China on the application of citizen science in a community reconstruction project. Dahe, a mountainous community (ca. 8000 ha in size) is located covering part of the World Heritage’s core and buffer zones, with an elevation range of 1000-3000 meters. The community suffered from two major earthquakes of 7.9 and 6.9 Mw in 2008 and 2013 respectively. Landslides and flooding threat the community and significantly limit their livelihood options. We integrated participatory disaster risk mapping (e.g., community vulnerability and capacity assessment) and mobile assisted natural hazards and natural resources mapping (e.g., using free APP GeoODK) into more conventional community reconstruction and livelihood building activities. We showed that better decisions are made based on results from these activities and local residents have a high level of buy-in in these new knowledge. We suggest that initiatives like this, if successfully scale-up, can also help generate much needed data and knowledge in similar less-developed and data deficient regions of the world

    Constraining the Skyrme effective interactions and the neutron skin thickness of nuclei using isospin diffusion data from heavy ion collisions

    Get PDF
    Recent analysis of the isospin diffusion data from heavy-ion collisions based on an isospin- and momentum-dependent transport model with in-medium nucleon-nucleon cross sections has led to the extraction of a value of L=88±25L=88\pm 25 MeV for the slope of the nuclear symmetry energy at saturation density. This imposes stringent constraints on both the parameters in the Skyrme effective interactions and the neutron skin thickness of heavy nuclei. Among the 21 sets of Skyrme interactions commonly used in nuclear structure studies, the 4 sets SIV, SV, Gσ_\sigma, and Rσ_\sigma are found to give LL values that are consistent with the extracted one. Further study on the correlations between the thickness of the neutron skin in finite nuclei and the nuclear matter symmetry energy in the Skyrme Hartree-Fock approach leads to predicted thickness of the neutron skin of 0.22±0.040.22\pm 0.04 fm for 208^{208}Pb, 0.29±0.040.29\pm 0.04 fm for 132^{132}Sn, and 0.22±0.040.22\pm 0.04 fm for 124^{124}Sn.Comment: 10 pages, 4 figures, 1 Table, Talk given at 1) International Conference on Nuclear Structure Physics, Shanghai, 12-17 June, 2006; 2) 11th China National Nuclear Structure Physics Conference, Changchun, Jilin, 13-18 July, 200

    Self-Synchronized Universal Droop Controller

    Get PDF
    In this paper, a self-synchronization mechanism is embedded into the universal droop controller (UDC), which is applicable to inverters having an impedance angle between −π/2 rad and π/2 rad, to form a self-synchronized UDC (SUDC). Both the voltage loop and the frequency loop of the UDC are modified to facilitate the standalone and grid-connected operation of inverters. Importantly, the dedicated phase-locked-loop that is often needed for grid-connected or parallel-operated converters is removed. The inverter is able to achieve synchronization before and after connection without the need of a dedicated synchronization unit. Since the original structure of the UDC is kept in the SUDC, the properties of the UDC, such as accurate power sharing and tight output voltage regulation, are well maintained. Extensive experimental results are presented to demonstrate the performance of the proposed SUDC for a gridconnected single-phase inverter

    Equation of state of the hot dense matter in a multi-phase transport model

    Full text link
    Within the framework of a multi-phase transport model, we study the equation of state and pressure anisotropy of the hot dense matter produced in central relativistic heavy ion collisions. Both are found to depend on the hadronization scheme and scattering cross sections used in the model. Furthermore, only partial thermalization is achieved in the produced matter as a result of its fast expansion

    Evolution of hepatitis B virus liver disease after hepatic replacement. Practical and theoretical considerations

    Get PDF
    The morphologic evolution of hepatitis B virus (HBV) liver disease in 45 hepatic allograft recipients who were HBV surface-antigen positive (HBs-Ag+) at the time of liver replacement and who survived for more than 60 days was studied by routine histologic and immunocytochemical analysis of serial pathology specimens. The findings in these patients were compared to a control group of 30 individuals who were immune to the HBV (anti-HBs antibody positive), but required hepatic replacement for other reasons. Eight of the forty-five (18%) HBsAg-positive patients have no serologic evidence of HBV reinfection after transplantation. All 37 remaining patients are reinfected; 21 (47%) developed chronic active hepatitis and/or cirhosis, 3 (7%) developed submassive necrosis, and 6 (14%) developed chronic lobular hepatitis. One patient lost her graft to chronic rejection, despite reinfection with the B virus. Four other patients (9%) developed a chronic carrier state. No long-term follow-up biopsies were available in the remaining two patients. The histologic features associated with dysfunction related to recurrent HBV infection evolved from an acute to chronic phase and were similar to hepatitis B seen in nonallografted livers. Furthermore HBV-related lesions could be separated from rejection using routine histology alone. The only exception to this conclusion was the occurrence of a peculiar HBV-related lesion in two recipients, described herein. Immunohistochemical analysis demonstrated the presence of viral antigens in almost all cases. Hepatic inflammation also was commonly present during HBV disease and consisted mostly of accessory cells and T lymphocytes. Analysis of the effect of major histocompatibility complex matching revealed no clear association between the number of class I or II matches or mismatches and the development, or pattern, of active hepatitis in the allograft. Peculiar pathologic alterations in several of the biopsies and failed allografts after HBV reinfection suggests that, under special circumstances, the B virus may by cytopathic

    A Tutorial on Learning Human Welder\u27s Behavior: Sensing, Modeling, and Control

    Get PDF
    Human welder\u27s experiences and skills are critical for producing quality welds in manual GTAW process. Learning human welder\u27s behavior can help develop next generation intelligent welding machines and train welders faster. In this tutorial paper, various aspects of mechanizing the welder\u27s intelligence are surveyed, including sensing of the weld pool, modeling of the welder\u27s adjustments and this model-based control approach. Specifically, different sensing methods of the weld pool are reviewed and a novel 3D vision-based sensing system developed at University of Kentucky is introduced. Characterization of the weld pool is performed and human intelligent model is constructed, including an extensive survey on modeling human dynamics and neuro-fuzzy techniques. Closed-loop control experiment results are presented to illustrate the robustness of the model-based intelligent controller despite welding speed disturbance. A foundation is thus established to explore the mechanism and transformation of human welder\u27s intelligence into robotic welding system. Finally future research directions in this field are presented
    • …
    corecore