265 research outputs found

    Ingredients of nuclear matrix element for two-neutrino double-beta decay of 48Ca

    Full text link
    Large-scale shell model calculations including two major shells are carried out, and the ingredients of nuclear matrix element for two-neutrino double beta decay are investigated. Based on the comparison between the shell model calculations accounting only for one major shell (pfpf-shell) and those for two major shells (sdpfsdpf-shell), the effect due to the excitation across the two major shells is quantitatively evaluated.Comment: To appear in J. Phys. Soc. Conf. Proc. (ARIS2014); for ver.2, Fig.1 is revise

    Benchmark calculation of no-core Monte Carlo shell model in light nuclei

    Full text link
    The Monte Carlo shell model is firstly applied to the calculation of the no-core shell model in light nuclei. The results are compared with those of the full configuration interaction. The agreements between them are within a few % at most.Comment: 4 pages, 1 figure, 1 table, Proceedings of the International Symposium on New Faces of Atomic Nuclei, Okinawa, Japan, Nov. 15-17, 201

    Clustering in stable and unstable nuclei in pp-shell and sdsd-shell regions

    Full text link
    According to microscopic calculations with antisymmetrized molecular dynamics, we studied cluster features in stable and unstable nuclei. A variety of structure was found in stable and unstable nuclei in the pp-shell and sdsd-shell regions. The structure of excited states of 12^{12}Be was investigated, while in sdsd-shell nuclei we focused on molecular states and deformed states. The deformed states in 28^{28}Si and 40^{40}Ca were discussed in connection with the high-lying molecular states. Appealing molecular states in 36^{36}Ar and 24^{24}Mg were suggested. The results signified that both clustering of nucleons and mean-field formation are essential features in sdsd-shell nuclei as well as pp-shell nuclei.Comment: 5 pages, 2 figs, proceedings of the 8th International conference on Clustering Aspects of Nuclear Structure and Dynamics, Nov. 2003, Nara, Japan, to be published in Nucl.Phys.

    Benchmarks of the full configuration interaction, Monte Carlo shell model, and no-core full configuration methods

    Full text link
    We report no-core solutions for properties of light nuclei with three different approaches in order to assess the accuracy and convergence rates of each method. Full configuration interaction (FCI), Monte Carlo shell model (MCSM) and no core full configuration (NCFC) approaches are solved separately for the ground state energy and other properties of seven light nuclei using the realistic JISP16 nucleon-nucleon interaction. The results are consistent among the different approaches. The methods differ significantly in how the required computational resources scale with increasing particle number for a given accuracy.Comment: 19 pages, 14 figures, 6 table

    Superdeformation in Asymmetric N>>Z Nucleus 40^{40}Ar

    Get PDF
    A rotational band with five γ\gamma-ray transitions ranging from 2+^{+} to 12+^{+} states was identified in 40^{40}Ar. This band is linked through γ\gamma transitions from the excited 2+^{+}, 4+^{+} and 6+^{+} levels to the low-lying states; this determines the excitation energy and the spin-parity of the band. The deduced transition quadrupole moment of 1.45−0.31+0.49eb^{+0.49}_{-0.31} eb indicates that the band has a superdeformed shape. The nature of the band is revealed by cranked Hartree--Fock--Bogoliubov calculations and a multiparticle--multihole configuration is assigned to the band

    Magic numbers in exotic nuclei and spin-isospin properties of {\it NN} interaction

    Get PDF
    The magic numbers in exotic nuclei are discussed, and their novel origin is shown to be the spin-isospin dependent part of the nucleon-nucleon interaction in nuclei. The importance and robustness of this mechanism is shown in terms of meson exchange, G-matrix and QCD theories. In neutron-rich exotic nuclei, magic numbers such as N = 8, 20, etc. can disappear, while N = 6, 16, etc. arise, affecting the structure of lightest exotic nuclei to nucleosynthesis of heavy elements.Comment: 4 pages, 3 figures, revte
    • …
    corecore