184 research outputs found

    Electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ

    Get PDF
    We study the electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ by means of density-functional band theory, Hubbard model calculations, and angle-resolved photoelectron spectroscopy (ARPES). The experimental spectra reveal significant quantitative and qualitative discrepancies to band theory. We demonstrate that the dispersive behavior as well as the temperature-dependence of the spectra can be consistently explained by the finite-energy physics of the one-dimensional Hubbard model at metallic doping. The model description can even be made quantitative, if one accounts for an enhanced hopping integral at the surface, most likely caused by a relaxation of the topmost molecular layer. Within this interpretation the ARPES data provide spectroscopic evidence for the existence of spin-charge separation on an energy scale of the conduction band width. The failure of the one-dimensional Hubbard model for the {\it low-energy} spectral behavior is attributed to interchain coupling and the additional effect of electron-phonon interaction.Comment: 18 pages, 9 figure

    Room temperature triplet state spectroscopy of organic semiconductors

    Get PDF
    Organic light-emitting devices and solar cells are devices that create, manipulate, and convert excited states in organic semiconductors. It is crucial to characterize these excited states, or excitons, to optimize device performance in applications like displays and solar energy harvesting. This is complicated if the excited state is a triplet because the electronic transition is ‘dark’ with a vanishing oscillator strength. As a consequence, triplet state spectroscopy must usually be performed at cryogenic temperatures to reduce competition from non-radiative rates. Here, we control non-radiative rates by engineering a solid-state host matrix containing the target molecule, allowing the observation of phosphorescence at room temperature and alleviating constraints of cryogenic experiments. We test these techniques on a wide range of materials with functionalities spanning multi-exciton generation (singlet exciton fission), organic light emitting device host materials, and thermally activated delayed fluorescence type emitters. Control of non-radiative modes in the matrix surrounding a target molecule may also have broader applications in light-emitting and photovoltaic devices.United States. Dept. of Energy. Center for Excitonics (Award DE-SC0001088

    Classification of behaviour in housed dairy cows using an accelerometer-based activity monitoring system

    Get PDF
    Background Advances in bio-telemetry technology have made it possible to automatically monitor and classify behavioural activities in many animals, including domesticated species such as dairy cows. Automated behavioural classification has the potential to improve health and welfare monitoring processes as part of a Precision Livestock Farming approach. Recent studies have used accelerometers and pedometers to classify behavioural activities in dairy cows, but such approaches often cannot discriminate accurately between biologically important behaviours such as feeding, lying and standing or transition events between lying and standing. In this study we develop a decision-tree algorithm that uses tri-axial accelerometer data from a neck-mounted sensor to both classify biologically important behaviour in dairy cows and to detect transition events between lying and standing. Results Data were collected from six dairy cows that were monitored continuously for 36 h. Direct visual observations of each cow were used to validate the algorithm. Results show that the decision-tree algorithm is able to accurately classify three types of biologically relevant behaviours: lying (77.42 % sensitivity, 98.63 % precision), standing (88.00 % sensitivity, 55.00 % precision), and feeding (98.78 % sensitivity, 93.10 % precision). Transitions between standing and lying were also detected accurately with an average sensitivity of 96.45 % and an average precision of 87.50 %. The sensitivity and precision of the decision-tree algorithm matches the performance of more computationally intensive algorithms such as hidden Markov models and support vector machines. Conclusions Biologically important behavioural activities in housed dairy cows can be classified accurately using a simple decision-tree algorithm applied to data collected from a neck-mounted tri-axial accelerometer. The algorithm could form part of a real-time behavioural monitoring system in order to automatically detect dairy cow health and welfare status

    Multiscale models for movement in oriented environments and their application to hilltopping in butterflies

    Get PDF
    Hilltopping butterflies direct their movement in response to topography, facilitating mating encounters via accumulation at summits. In this paper, we take hilltopping as a case study to explore the impact of complex orienteering cues on population dynamics. The modelling employs a standard multiscale framework, in which an individual's movement path is described as a stochastic 'velocity-jump' process and scaling applied to generate a macroscopic model capable of simulating large populations in landscapes. In this manner, the terms and parameters of the macroscopic model directly relate to statistical inputs of the individual-level model (mean speeds, turning rates and turning distributions). Applied to hilltopping in butterflies, we demonstrate how hilltopping acts to aggregate populations at summits, optimising mating for low-density species. However, for abundant populations, hilltopping is not only less effective but also possibly disadvantageous, with hilltopping males recording a lower mating rate than their non-hilltopping competitors. © 2013 Springer Science+Business Media Dordrecht

    Step by step: reconstruction of terrestrial animal movement paths by dead-reckoning

    Get PDF
    Background: Research on wild animal ecology is increasingly employing GPS telemetry in order to determine animal movement. However, GPS systems record position intermittently, providing no information on latent position or track tortuosity. High frequency GPS have high power requirements, which necessitates large batteries (often effectively precluding their use on small animals) or reduced deployment duration. Dead-reckoning is an alternative approach which has the potential to ‘fill in the gaps’ between less resolute forms of telemetry without incurring the power costs. However, although this method has been used in aquatic environments, no explicit demonstration of terrestrial dead-reckoning has been presented.Results: We perform a simple validation experiment to assess the rate of error accumulation in terrestrial dead-reckoning. In addition, examples of successful implementation of dead-reckoning are given using data from the domestic dog Canus lupus, horse Equus ferus, cow Bos taurus and wild badger Meles meles.Conclusions: This study documents how terrestrial dead-reckoning can be undertaken, describing derivation of heading from tri-axial accelerometer and tri-axial magnetometer data, correction for hard and soft iron distortions on the magnetometer output, and presenting a novel correction procedure to marry dead-reckoned paths to ground-truthed positions. This study is the first explicit demonstration of terrestrial dead-reckoning, which provides a workable method of deriving the paths of animals on a step-by-step scale. The wider implications of this method for the understanding of animal movement ecology are discussed

    SecA, a remarkable nanomachine

    Get PDF
    Biological cells harbor a variety of molecular machines that carry out mechanical work at the nanoscale. One of these nanomachines is the bacterial motor protein SecA which translocates secretory proteins through the protein-conducting membrane channel SecYEG. SecA converts chemically stored energy in the form of ATP into a mechanical force to drive polypeptide transport through SecYEG and across the cytoplasmic membrane. In order to accommodate a translocating polypeptide chain and to release transmembrane segments of membrane proteins into the lipid bilayer, SecYEG needs to open its central channel and the lateral gate. Recent crystal structures provide a detailed insight into the rearrangements required for channel opening. Here, we review our current understanding of the mode of operation of the SecA motor protein in concert with the dynamic SecYEG channel. We conclude with a new model for SecA-mediated protein translocation that unifies previous conflicting data

    A Low-Cost GPS GSM/GPRS Telemetry System: Performance in Stationary Field Tests and Preliminary Data on Wild Otters (Lutra lutra)

    Get PDF
    Background: Despite the increasing worldwide use of global positioning system (GPS) telemetry in wildlife research, it has never been tested on any freshwater diving animal or in the peculiar conditions of the riparian habitat, despite this latter being one of the most important habitat types for many animal taxa. Moreover, in most cases, the GPS devices used have been commercial and expensive, limiting their use in low-budget projects. Methodology/Principal Findings: We have developed a low-cost, easily constructed GPS GSM/GPRS (Global System for Mobile Communications/General Packet Radio Service) and examined its performance in stationary tests, by assessing the influence of different habitat types, including the riparian, as well as water submersion and certain climatic and environmental variables on GPS fix-success rate and accuracy. We then tested the GPS on wild diving animals, applying it, for the first time, to an otter species (Lutra lutra). The rate of locations acquired during the stationary tests reached 63.2%, with an average location error of 8.94 m (SD = 8.55). GPS performance in riparian habitats was principally affected by water submersion and secondarily by GPS inclination and position within the riverbed. Temporal and spatial correlations of location estimates accounted for some variation in the data sets. GPS-tagged otters also provided accurate locations and an even higher GPS fix-success rate (68.2%). Conclusions/Significance: Our results suggest that GPS telemetry is reliably applicable to riparian and even divin
    • …
    corecore