46,084 research outputs found

    A Mean-field Approach for an Intercarrier Interference Canceller for OFDM

    Full text link
    The similarity of the mathematical description of random-field spin systems to orthogonal frequency-division multiplexing (OFDM) scheme for wireless communication is exploited in an intercarrier-interference (ICI) canceller used in the demodulation of OFDM. The translational symmetry in the Fourier domain generically concentrates the major contribution of ICI from each subcarrier in the subcarrier's neighborhood. This observation in conjunction with mean field approach leads to a development of an ICI canceller whose necessary cost of computation scales linearly with respect to the number of subcarriers. It is also shown that the dynamics of the mean-field canceller are well captured by a discrete map of a single macroscopic variable, without taking the spatial and time correlations of estimated variables into account.Comment: 7pages, 3figure

    PT-Symmetric Quantum Theory Defined in a Krein Space

    Full text link
    We provide a mathematical framework for PT-symmetric quantum theory, which is applicable irrespective of whether a system is defined on R or a complex contour, whether PT symmetry is unbroken, and so on. The linear space in which PT-symmetric quantum theory is naturally defined is a Krein space constructed by introducing an indefinite metric into a Hilbert space composed of square integrable complex functions in a complex contour. We show that in this Krein space every PT-symmetric operator is P-Hermitian if and only if it has transposition symmetry as well, from which the characteristic properties of the PT-symmetric Hamiltonians found in the literature follow. Some possible ways to construct physical theories are discussed within the restriction to the class K(H).Comment: 8 pages, no figures; Refs. added, minor revisio

    Contribution of Type Ia and Type II Supernovae for Intra-Cluster Medium Enrichment

    Full text link
    The origin of the chemical composition of the intracluster medium (ICM) is discussed in this paper. In particular, the contribution from Type Ia supernovae (SNe Ia) to the ICM enrichment is shown to exist by adopting the fitting formulas which have been used in the analysis of the solar system abundances. Our analysis means that we can use the frequency of SNe Ia relative to SNe II as the better measure than MFe,SNIa/MFe,totalM_{Fe, SN Ia}/M_{Fe, total} for estimating the contribution of SNe Ia. Moreover, the chemical compositions of ICMs are shown to be similar to that of the solar system abundances. We can also reproduce the sulfur/iron abundance ratio within a factor of 2, which means that the abundance problem of sulfur needs not to be emphasized too strongly. We need more precise observations to conclude whether ICMs really suffer the shortage problem of sulfur or not.Comment: 20 pages, LaTeX text and 15 postscript figures. Accepted for publication in Astrophysical Journa

    Influence of magnetic impurities on charge transport in diffusive-normal-metal / superconductor junctions

    Get PDF
    Charge transport in the diffusive normal metal (DN) / insulator / ss- and d% d -wave superconductor junctions is studied in the presence of magnetic impurities in DN in the framework of the quasiclassical Usadel equations with the generalized boundary conditions. The cases of ss- and d-wave superconducting electrodes are considered. The junction conductance is calculated as a function of a bias voltage for various parameters of the DN metal: resistivity, Thouless energy, the magnetic impurity scattering rate and the transparency of the insulating barrier between DN and a superconductor. It is shown that the proximity effect is suppressed by magnetic impurity scattering in DN for any value of the barrier transparency. In low-transparent s-wave junctions this leads to the suppression of the normalized zero-bias conductance. In contrast to that, in high transparent junctions zero-bias conductance is enhanced by magnetic impurity scattering. The physical origin of this effect is discussed. For the d-wave junctions, the dependence on the misorientation angle α\alpha between the interface normal and the crystal axis of a superconductor is studied. The zero-bias conductance peak is suppressed by the magnetic impurity scattering only for low transparent junctions with α0\alpha \sim 0. In other cases the conductance of the d-wave junctions does not depend on the magnetic impurity scattering due to strong suppression of the proximity effect by the midgap Andreev resonant states.Comment: 11 pages, 13 figures;d-wave case adde

    S=1/2 Kagome antiferromagnets Cs2_2Cu3MF_3MF_{12}$ with M=Zr and Hf

    Full text link
    Magnetization and specific heat measurements have been carried out on Cs2_2Cu3_3ZrF12_{12} and Cs2_2Cu3_3HfF12_{12} single crystals, in which Cu2+^{2+} ions with spin-1/2 form a regular Kagom\'{e} lattice. The antiferromagnetic exchange interaction between neighboring Cu2+^{2+} spins is J/kB360J/k_{\rm B}\simeq 360 K and 540 K for Cs2_2Cu3_3ZrF12_{12} and Cs2_2Cu3_3HfF12_{12}, respectively. Structural phase transitions were observed at Tt210T_{\rm t}\simeq 210 K and 175 K for Cs2_2Cu3_3ZrF12_{12} and Cs2_2Cu3_3HfF12_{12}, respectively. The specific heat shows a small bend anomaly indicative of magnetic ordering at TN=23.5T_\mathrm{N}= 23.5 K and 24.5 K in Cs2_2Cu3_3ZrF12_{12} and Cs2_2Cu3_3HfF12_{12}, respectively. Weak ferromagnetic behavior was observed below TNT_\mathrm{N}. This weak ferromagnetism should be ascribed to the antisymmetric interaction of the Dzyaloshinsky-Moriya type that are generally allowed in the Kagom\'{e} lattice.Comment: 6 pages, 4 figure. Conference proceeding of Highly Frustrated Magnetism 200

    Nonlinear Conduction by Melting of Stripe-Type Charge Order in Organic Conductors with Triangular Lattices

    Full text link
    We theoretically discuss the mechanism for the peculiar nonlinear conduction in quasi-two-dimensional organic conductors \theta-(BEDT-TTF)2X [BEDT-TTF=bis(ethylenedithio)tetrathiafulvalene] through the melting of stripe-type charge order. An extended Peierls-Hubbard model attached to metallic electrodes is investigated by a nonequilibrium Green's function technique. A novel current-voltage characteristic appears in a coexistent state of stripe-type and nonstripe 3-fold charge orders, where the applied bias melts mainly the stripe-type charge order through the reduction of lattice distortion, whereas the 3-fold charge order survives. These contrastive responses of the two different charge orders are consistent with the experimental observations.Comment: 5 pages, 4 figures, to appear in J. Phys. Soc. Jp

    Temperature-dependence of spin-polarized transport in ferromagnet / unconventional superconductor junctions

    Full text link
    Tunneling conductance in ferromagnet / unconventional superconductor junctions is studied theoretically as a function of temperatures and spin-polarization in feromagnets. In d-wave superconductor junctions, the existence of a zero-energy Andreev bound state drastically affects the temperature-dependence of the zero-bias conductance (ZBC). In p-wave triplet superconductor junctions, numerical results show a wide variety in temperature-dependence of the ZBC depending on the direction of the magnetic moment in ferromagnets and the pairing symmetry in superconductors such as pxp_{x}, pyp_{y} and px+ipyp_{x}+ip_{y}-wave pair potential. The last one is a promising symmetry of Sr2_2RuO4_4. From these characteristic features in the conductance, we may obtain the information about the degree of spin-polarization in ferromagnets and the direction of the dd-vector in triplet superconductors
    corecore