1,103 research outputs found

    S=1/2 Kagome antiferromagnets Cs2_2Cu3MF_3MF_{12}$ with M=Zr and Hf

    Full text link
    Magnetization and specific heat measurements have been carried out on Cs2_2Cu3_3ZrF12_{12} and Cs2_2Cu3_3HfF12_{12} single crystals, in which Cu2+^{2+} ions with spin-1/2 form a regular Kagom\'{e} lattice. The antiferromagnetic exchange interaction between neighboring Cu2+^{2+} spins is J/kB360J/k_{\rm B}\simeq 360 K and 540 K for Cs2_2Cu3_3ZrF12_{12} and Cs2_2Cu3_3HfF12_{12}, respectively. Structural phase transitions were observed at Tt210T_{\rm t}\simeq 210 K and 175 K for Cs2_2Cu3_3ZrF12_{12} and Cs2_2Cu3_3HfF12_{12}, respectively. The specific heat shows a small bend anomaly indicative of magnetic ordering at TN=23.5T_\mathrm{N}= 23.5 K and 24.5 K in Cs2_2Cu3_3ZrF12_{12} and Cs2_2Cu3_3HfF12_{12}, respectively. Weak ferromagnetic behavior was observed below TNT_\mathrm{N}. This weak ferromagnetism should be ascribed to the antisymmetric interaction of the Dzyaloshinsky-Moriya type that are generally allowed in the Kagom\'{e} lattice.Comment: 6 pages, 4 figure. Conference proceeding of Highly Frustrated Magnetism 200

    Redshift-space Distortions of the Power Spectrum of Cosmological Objects on a Light Cone : Explicit Formulations and Theoretical Implications

    Get PDF
    We examine the effects of the linear and the cosmological redshift-space distortions on the power spectrum of cosmological objects on a light cone. We develop theoretical formulae for the power spectrum in linear theory of density perturbations in a rigorous manner starting from first principle corresponding to Fourier analysis. Approximate formulae, which are useful properly to incorporate the redshift-space distortion effects into the power spectrum are derived, and the validity is examined. Applying our formulae to galaxy and quasar samples which roughly match the SDSS survey, we will show how the redshift-space distortions distort the power spectrum on the light cone quantitatively.Comment: 30 pages, Accepted for publication in the Astrophysical Journal Supplement Serie

    Vlasov versus N-body: the H\'enon sphere

    Full text link
    We perform a detailed comparison of the phase-space density traced by the particle distribution in Gadget simulations to the result obtained with a spherical Vlasov solver using the splitting algorithm. The systems considered are apodized H\'enon spheres with two values of the virial ratio, R ~ 0.1 and 0.5. After checking that spherical symmetry is well preserved by the N-body simulations, visual and quantitative comparisons are performed. In particular we introduce new statistics, correlators and entropic estimators, based on the likelihood of whether N-body simulations actually trace randomly the Vlasov phase-space density. When taking into account the limits of both the N-body and the Vlasov codes, namely collective effects due to the particle shot noise in the first case and diffusion and possible nonlinear instabilities due to finite resolution of the phase-space grid in the second case, we find a spectacular agreement between both methods, even in regions of phase-space where nontrivial physical instabilities develop. However, in the colder case, R=0.1, it was not possible to prove actual numerical convergence of the N-body results after a number of dynamical times, even with N=108^8 particles.Comment: 19 pages, 11 figures, MNRAS, in pres
    corecore