38 research outputs found

    Modulation of oxazolone-induced hypersensitivity in mice by selective PDE inhibitors

    Get PDF
    The effects of PDE inhibitors on oxazolone-induced contact hypersensitivity (CS) were studied in mice. Rolipram, Ro 20-1724 and theophylline dose dependently inhibited CS but none caused >53% inhibition. ED30 values at 24 h before challenge for rolipram, Ro 20-1724 and theophylline were 2.1, 5.4 and 30.4 mg/kg, p.o., respectively. Milrinone and SKF 94836 at 30 mg/kg caused a small, but significant inhibition of 13% and 18%, respectively, although the inhibition (8%) caused by zaprinast was not significant. Betamethasone (10 mg/kg, p.o.) caused a marked inhibition (80%) as did indomethacin (65% at 5 mg/kg, p.o.). Rolipram and Ro 20-1724 inhibited proliferation of mouse lymphoblasts with IC50 values of 0.08 μM and 0.83 μM, respectively. In contrast, zaprinast caused only a weak inhibition (IC50 = 119 μM) of lymphocyte proliferation, whereas SKF 94836 and theophylline failed to cause any significant inhibition at 100 μM (26% and 2%, respectively). These findings suggest that PDE IV isozymes play a principal role in mediating CS by inhibiting lymphocyte activation

    Concepts of GPCR-controlled navigation in the immune system

    No full text
    G-protein-coupled receptor (GPCR) signaling is essential for the spatiotemporal control of leukocyte dynamics during immune responses. For efficient navigation through mammalian tissues, most leukocyte types express more than one GPCR on their surface and sense a wide range of chemokines and chemoattractants, leading to basic forms of leukocyte movement (chemokinesis, haptokinesis, chemotaxis, haptotaxis, and chemorepulsion). How leukocytes integrate multiple GPCR signals and make directional decisions in lymphoid and inflamed tissues is still subject of intense research. Many of our concepts on GPCR-controlled leukocyte navigation in the presence of multiple GPCR signals derive from in vitro chemotaxis studies and lower vertebrates. In this review, we refer to these concepts and critically contemplate their relevance for the directional movement of several leukocyte subsets (neutrophils, T cells, and dendritic cells) in the complexity of mouse tissues. We discuss how leukocyte navigation can be regulated at the level of only a single GPCR (surface expression, competitive antagonism, oligomerization, homologous desensitization, and receptor internalization) or multiple GPCRs (synergy, hierarchical and non-hierarchical competition, sequential signaling, heterologous desensitization, and agonist scavenging). In particular, we will highlight recent advances in understanding GPCR-controlled leukocyte navigation by intravital microscopy of immune cells in mice

    CCR9-CCL25 interactions promote cisplatin resistance in breast cancer cell through Akt activation in a PI3K-dependent and FAK-independent fashion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chemotherapy heavily relies on apoptosis to kill breast cancer (BrCa) cells. Many breast tumors respond to chemotherapy, but cells that survive this initial response gain resistance to subsequent treatments. This leads to aggressive cell variants with an enhanced ability to migrate, invade and survive at secondary sites. Metastasis and chemoresistance are responsible for most cancer-related deaths; hence, therapies designed to minimize both are greatly needed. We have recently shown that CCR9-CCL25 interactions promote BrCa cell migration and invasion, while others have shown that this axis play important role in T cell survival. In this study we have shown potential role of CCR9-CCL25 axis in breast cancer cell survival and therapeutic efficacy of cisplatin.</p> <p>Methods</p> <p>Bromodeoxyuridine (BrdU) incorporation, Vybrant apoptosis and TUNEL assays were performed to ascertain the role of CCR9-CCL25 axis in cisplatin-induced apoptosis of BrCa cells. Fast Activated Cell-based ELISA (FACE) assay was used to quantify <it>In situ </it>activation of PI3K<sup>p85</sup>, Akt<sup>Ser473</sup>, GSK-3β<sup>Ser9 </sup>and FKHR<sup>Thr24 </sup>in breast cancer cells with or without cisplatin treatment in presence or absence of CCL25.</p> <p>Results</p> <p>CCR9-CCL25 axis provides survival advantage to BrCa cells and inhibits cisplatin-induced apoptosis in a PI3K-dependent and focal adhesion kinase (FAK)-independent fashion. Furthermore, CCR9-CCL25 axis activates cell-survival signals through Akt and subsequent glycogen synthase kinase-3 beta (GSK-3β) and forkhead in human rhabdomyosarcoma (FKHR) inactivation. These results show that CCR9-CCL25 axis play important role in BrCa cell survival and low chemotherapeutic efficacy of cisplatin primarily through PI3K/Akt dependent fashion.</p

    Chemokine Coreceptor Signaling in HIV-1 Infection and Pathogenesis

    Get PDF
    Binding of the HIV-1 envelope to its chemokine coreceptors mediates two major biological events: membrane fusion and signaling transduction. The fusion process has been well studied, yet the role of chemokine coreceptor signaling in viral infection has remained elusive through the past decade. With the recent demonstration of the signaling requirement for HIV latent infection of resting CD4 T cells, the issue of coreceptor signaling needs to be thoroughly revisited. It is likely that virus-mediated signaling events may facilitate infection in various immunologic settings in vivo where cellular conditions need to be primed; in other words, HIV may exploit the chemokine signaling network shared among immune cells to gain access to downstream cellular components, which can then serve as effective tools to break cellular barriers. This virus-hijacked aberrant signaling process may in turn facilitate pathogenesis. In this review, we summarize past and present studies on HIV coreceptor signaling. We also discuss possible roles of coreceptor signaling in facilitating viral infection and pathogenesis

    Abrogation of Cbl–PI3K Interaction Increases Bone Formation and Osteoblast Proliferation

    Get PDF
    Cbl is an adaptor protein and E3 ligase that plays both positive and negative roles in several signaling pathways that affect various cellular functions. Tyrosine 737 is unique to Cbl and phosphorylated by Src family kinases. Phosphorylated CblY737 creates a binding site for the p85 regulatory subunit of phosphatidylinositol 3 kinase (PI3K) that also plays an important role in the regulation of bone homeostasis. To investigate the role of Cbl–PI3K interaction in bone homeostasis, we examined knock-in mice in which the PI3K binding site on Cbl was ablated due to the substitution of tyrosine 737 to phenylalanine (CblYF/YF, YF mice). We previously reported that bone volume in these mice is increased due to decreased osteoclast function (Adapala et al., J Biol Chem 285:36745–36758, 19). Here, we report that YF mice also have increased bone formation and osteoblast numbers. In ex vivo cultures bone marrow-derived YF osteoblasts showed increased Col1A expression and their proliferation was also significantly augmented. Moreover, proliferation of MC3T3-E1 cells was increased after treatment with conditioned medium generated by culturing YF bone marrow stromal cells. Expression of stromal derived factor-1 (SDF-1) was increased in YF bone marrow stromal cells compared to wild type. Increased immunostaining of SDF-1 and CXCR4 was observed in YF bone marrow stromal cells compared to wild type. Treatment of YF condition medium with neutralizing anti-SDF-1 and anti-CXCR4 antibodies attenuated MC3T3-E1 cell proliferation. Cumulatively, these results show that abrogation of Cbl–PI3K interaction perturbs bone homeostasis, affecting both osteoclast function and osteoblast proliferation

    Quantitative Phosphoproteomics of CXCL12 (SDF-1) Signaling

    Get PDF
    CXCL12 (SDF-1) is a chemokine that binds to and signals through the seven transmembrane receptor CXCR4. The CXCL12/CXCR4 signaling axis has been implicated in both cancer metastases and human immunodeficiency virus type 1 (HIV-1) infection and a more complete understanding of CXCL12/CXCR4 signaling pathways may support efforts to develop therapeutics for these diseases. Mass spectrometry-based phosphoproteomics has emerged as an important tool in studying signaling networks in an unbiased fashion. We employed stable isotope labeling with amino acids in cell culture (SILAC) quantitative phosphoproteomics to examine the CXCL12/CXCR4 signaling axis in the human lymphoblastic CEM cell line. We quantified 4,074 unique SILAC pairs from 1,673 proteins and 89 phosphopeptides were deemed CXCL12-responsive in biological replicates. Several well established CXCL12-responsive phosphosites such as AKT (pS473) and ERK2 (pY204) were confirmed in our study. We also validated two novel CXCL12-responsive phosphosites, stathmin (pS16) and AKT1S1 (pT246) by Western blot. Pathway analysis and comparisons with other phosphoproteomic datasets revealed that genes from CXCL12-responsive phosphosites are enriched for cellular pathways such as T cell activation, epidermal growth factor and mammalian target of rapamycin (mTOR) signaling, pathways which have previously been linked to CXCL12/CXCR4 signaling. Several of the novel CXCL12-responsive phosphoproteins from our study have also been implicated with cellular migration and HIV-1 infection, thus providing an attractive list of potential targets for the development of cancer metastasis and HIV-1 therapeutics and for furthering our understanding of chemokine signaling regulation by reversible phosphorylation
    corecore