8 research outputs found

    Force-Velocity Curves of Motor Proteins Cooperating In Vivo

    Get PDF
    Motor proteins convert chemical energy into work, thereby generating persistent motion of cellular and subcellular objects. The velocities of motor proteins as a function of opposing loads have been previously determined in vitro for single motors. These single molecule force-velocity curves have been useful for elucidating motor kinetics and for estimating motor performance under physiological loads due to, for example, the cytoplasmic drag force on transported organelles. Here we report forcevelocity curves for single and multiple motors measured in vivo. Using motion enhanced differential interference contrast (MEDIC) movies of living NT2 (neuron-committed teratocarcinoma) cells at 37°C, three parameters were measured-velocity (v), radius (a), and effective cytoplasmic viscosity (n1)-as they applied to moving vesicles. These parameters were combined in Stokes\u27 equation, F= 6panv1, to determine the force, F, required to transport a single intracellular particle at velocity, v. In addition, the number of active motors was inferred from the multimodal pattern seen in a normalized velocity histogram. Using this inference, the resulting in vivo force-velocity curve for a single motor agrees with previously reported in vitro single motor force-velocity curves. Interestingly, however, the curves for two and three motors lie significantly higher in both measured velocity and computed force, which suggests that motors can work cooperatively to attain higher transport forces and velocities

    Cooperative protofilament switching emerges from inter-motor interference in multiple-motor transport

    No full text
    Within living cells, the transport of cargo is accomplished by groups of molecular motors. Such collective transport could utilize mechanisms which emerge from inter-motor interactions in ways that are yet to be fully understood. Here we combined experimental measurements of two-kinesin transport with a theoretical framework to investigate the functional ramifications of inter-motor interactions on individual motor function and collective cargo transport. In contrast to kinesin's low sidestepping frequency when present as a single motor, with exactly two kinesins per cargo, we observed substantial motion perpendicular to the microtubule. Our model captures a surface-associated mode of kinesin, which is only accessible via inter-motor interference in groups, in which kinesin diffuses along the microtubule surface and rapidly “hops” between protofilaments without dissociating from the microtubule. Critically, each kinesin transitions dynamically between the active stepping mode and this weak surface-associated mode enhancing local exploration of the microtubule surface, possibly enabling cellular cargos to overcome macromolecular crowding and to navigate obstacles along microtubule tracks without sacrificing overall travel distance
    corecore