18,262 research outputs found

    Nonlinear r-modes in a spherical shell: issues of principle

    Get PDF
    We use a simple physical model to study the nonlinear behaviour of the r-mode instability. We assume that r-modes (Rossby waves) are excited in a thin spherical shell of rotating incompressible fluid. For this case, exact Rossby wave solutions of arbitrary amplitude are known. We find that: (a) These nonlinear Rossby waves carry ZERO physical angular momentum and positive physical energy, which is contrary to the folklore belief that the r-mode angular momentum and energy are negative. (b) Within our model, we confirm the differential drift reported by Rezzolla, Lamb and Shapiro (1999). Radiation reaction is introduced into the model by assuming that the fluid is electrically charged; r-modes are coupled to electromagnetic radiation through current (magnetic) multipole moments. We find that: (c) To linear order in the mode amplitude, r-modes are subject to the CFS instability, as expected. (d) Radiation reaction decreases the angular velocity of the shell and causes differential rotation (which is distinct from but similar in magnitude to the differential drift reported by Rezzolla et al.) prior to saturation of the r-mode growth. This is contrary to the phenomenological treatments to date, which assume that the loss of stellar angular momentum is accounted for by the r-mode growth. We demonstrate, for the first time, that r-mode radiation reaction leads to differential rotation. (e) We show that for l=2 r-mode electromagnetic radiation reaction is equivalent to gravitational radiation reaction in the lowest post-Newtonian order.Comment: 8 pages, no figures, uses MNRAS style, abstract abridged to fit into 24 line

    Mode-Locked Two-Photon States

    Full text link
    The concept of mode locking in laser is applied to a two-photon state with frequency entanglement. Cavity enhanced parametric down-conversion is found to produce exactly such a state. The mode-locked two-photon state exhibits a comb-like correlation function. An unbalanced Hong-Ou-Mandel type interferometer is used to measure the correlation function. A revival of the typical interference dip is observed. We will discuss schemes for engineering of quantum states in time domain.Comment: 4 pages, 5 figure

    Parity Reversing Involutions on Plane Trees and 2-Motzkin Paths

    Get PDF
    The problem of counting plane trees with nn edges and an even or an odd number of leaves was studied by Eu, Liu and Yeh, in connection with an identity on coloring nets due to Stanley. This identity was also obtained by Bonin, Shapiro and Simion in their study of Schr\"oder paths, and it was recently derived by Coker using the Lagrange inversion formula. An equivalent problem for partitions was independently studied by Klazar. We present three parity reversing involutions, one for unlabelled plane trees, the other for labelled plane trees and one for 2-Motzkin paths which are in one-to-one correspondence with Dyck paths.Comment: 8 pages, 4 figure

    Annulment--Divorce--Prior Living Spouse

    Get PDF

    Medium effects of magnetic moments of baryons on neutron stars under strong magnetic fields

    Full text link
    We investigate medium effects due to density-dependent magnetic moments of baryons on neutron stars under strong magnetic fields. If we allow the variation of anomalous magnetic moments (AMMs) of baryons in dense matter under strong magnetic fields, AMMs of nucleons are enhanced to be larger than those of hyperons. The enhancement naturally affects the chemical potentials of baryons to be large and leads to the increase of a proton fraction. Consequently, it causes the suppression of hyperons, resulting in the stiffness of the equation of state. Under the presumed strong magnetic fields, we evaluate relevant particles' population, the equation of state and the maximum masses of neutron stars by including density-dependent AMMs and compare them with those obtained from AMMs in free space

    Exemption of Veterans\u27 Benefits

    Get PDF
    corecore