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Abstract

The problem of counting plane trees withn edges and an even or an odd number of leaves has been
recently studied by Eu, Liu and Yeh, in connection with an identity on coloring nets due to Stanley.
This identity was also obtained by Bonin, Shapiro and Simion in their study of Schröder paths, and
it was recently derived by Coker using the Lagrange inversion formula. An equivalent problem for
partitions was independently studied by Klazar. We present three parity reversing involutions, one
for unlabelled plane trees, theother for labelled plane trees and one for 2-Motzkin paths which are
in one-to-one correspondence with Dyck paths.
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1. Introduction

The set of unlabelled (rooted) plane trees withn edges is denoted byPn, and is counted
by the Catalan number

cn = 1

n + 1

(
2n
n

)
.

The reader is referred to the survey of Stanley [8,9] and references therein for combinatorial
objects enumerated by the Catalan numbers. In a recent paper by Eu, Liu and Yeh [5], the
authors consider the problem of counting plane trees with further specification on the parity
of the number of leaves. LetPe(n) (Po(n), respectively) denote the number of plane trees
with n edges and an even (odd, respectively) number of leaves. Eu, Liu and Yeh obtain the
following result byusing generating functions.

Theorem 1.1 (Eu–Liu–Yeh). The following relations hold,

Pe(2n) − Po(2n) = 0 (1.1)

Pe(2n + 1) − Po(2n + 1) = (−1)n+1cn. (1.2)

Clearly, from the above theorem one can expressPe(n) and Po(n) in terms of the
Catalan numbers. Note that this identity was also obtained by Bonin, Shapiro and Simion
[10] in their study of Schröder paths, and it was recently derived by Coker [12] using the
Lagrange inversion formula. Klazar [6] also uses generating functions to derive equivalent
results for set partitions with restrictions on the parity of the number of blocks. In fact,
plane trees withn edges andk leaves are in one-to-one correspondence with noncrossing
partitions of {1, . . . , n} with k blocks [2,7].

Two combinatorial proofs of the relation (1.1) are given in [5]. The relation (1.2) is
analogous to an identity of Stanley [9] on coloring nets. It is shown in [5] that (1.2) is
equivalent to that of Stanley by a correspondence of Deutsch [3] on equidistribution of the
number of even-level vertices and the number of leaves on the set of plane trees withn
edges.

The objective of this paper is to give three parity reversing involutions for both the
relations (1.1) and (1.2); the first involution is based on unlabelled plane trees, and the
second is based on labelled plane trees and a decomposition algorithm in [1]. The last
involution is based on a bijection between 2-Motzkin paths and unlabelled plane trees
in [4].

2. An involution on plane trees

We begin with an observation that for any plane treewith n edges one may attach to
each vertex a leaf as its first child to form a plane tree with 2n + 1 edges. We useBn

to denote the set of plane trees withn edges such that any leaf is the first child of some
internal vertex and the first child of any internal vertex must be a leaf. Notice thatBn is
empty if n is even and

|B2n+1| = cn .
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Our involution is based on the setPn \ Bn. We define the parity of a plane tree as the
parity of the number of leaves. Moreover, we define the sign of a plane tree as−1 if it is
odd, and as 1 if it is even. For any nonroot vertexv of a plane tree, we say thatv is legal
if v is an internal vertex, but it is not the first child of some internal vertex, or ifv is the
first leaf child of some internal vertex. Otherwise,v is calledillegal. A plane treeT is said
to belegal if every nonroot vertex ofT is legal. In particular, the plane tree with only one
vertex is illegal. In other words,Bn is the set of legal trees withn edges.

Theorem 2.1. There is a parity reversing involution Φ on the set Pn \ Bn.

Proof. The involution can be described recursively. LetT be a planetree inPn \ Bn. We
now conduct a depth first search for an illegal vertex ofT in the following order: Let
v1, v2, . . . , vk be the children of the root ofT from left to right andTi be the subtree of
T rooted at the vertexvi for 1 ≤ i ≤ k. Then we search for an illegal vertex inTk . If Tk

is legal, then we conduct the search forTk−1, and soon. If T2, . . . , Tk are all legal, then
the first childv1 of T must be an internal vertex which implies thatv1 is illegal. Using
the above search scheme, we can find an illegal vertexv of T which is the first vertex
encountered while implementing the above search.

Let u be the father ofv andTu be the subtree ofT rooted at the vertexu. We now have
two cases. (1) The vertexv is a leaf, but it is not the first child ofu. (2) The vertexv is an
internal vertex, and it is the first child ofu. In thiscase, all the subtrees rooted at the other
children ofu are legal.

For Case (1), let w1, w2, . . . , wi be the children of u that are to the left ofv. We now
cut off the edges betweenu andw1, w2, . . . , wi , and move the subtreesTw1, . . . , Twi as
subtrees ofv in the same order. LetΦ(T ) denote theresulting tree. Note that in the search
process forΦ(T ), the vertexv is still the first encountered illegal vertex.

For Case (2), we may reverse the construction for Case (1). Hence we obtain a parity
reversing involution Φ seeFig. 1. �

Note thatB2n is empty and any plane tree inB2n+1 hasn + 1 leaves. The involution Φ
implies a combinatorial proof of relations (1.1) and (1.2) if the signs of the plane trees are
taken into account. We also note that the involutionΦ is different from the involution of
Eu, Liu and Yeh [5] for the relation (1.1).

3. A bijective algorithm for labelled trees

In this section, we give a parity reversing involution on labelled plane trees that also
leads to a combinatorial interpretation of the relations for labelled plane trees. Note that
the number of labelled plane tress withn edges, orn + 1 vertices, equals(n + 1)! times the
number of unlabelled plane trees withn edges, which we denote by

tn = (n + 1)!cn = (2n)!
n! .

In [1], the author gives a bijective algorithm for decomposing a labelled plane tree
on {1, 2, . . . , n + 1} into a set F of n matches with labels {1, . . . , n, n + 1, (n +
2)∗, . . . , (2n)∗}, where a match is a rooted tree with two vertices. The reverse procedure of
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Fig. 1. Involution Φ on plane trees.

Fig. 2. A horizontal merge and vertical merge.

the decomposition algorithm is the following merging algorithm. We start with a setF of
matches on{1, . . . , n + 1, (n + 2)∗, . . . , (2n)∗}. A vertex labelled by a mark∗ is called a
marked vertex.

(1) Find the treeT with the smallest root in which no vertex is marked. Leti be the root
of T .

(2) Find the treeT ∗ in F that contains the smallest marked vertex. Letj∗ be this marked
vertex.

(3) If j∗ is the root of T ∗, then mergeT andT ∗ by identifyingi and j∗, keepi as the new
vertex, and put the subtrees ofT ∗ to the right ofT . Theoperation iscalled ahorizontal
merge. If j∗ is a leaf ofT ∗, then replacej∗ with T in T ∗. This operation is called a
vertical merge. SeeFig. 2.

(4) Repeat the above procedure untilF becomes a labelled tree.

For any setF of n matches labelled by{1, . . . , n + 1, (n + 2)∗, . . . , (2n)∗}, a match is
said to bepure if it consists of either two unmarked vertices or two marked vertices. We
useAn to denote the set of pure matches on{1, . . . , n + 1, (n + 2)∗, . . . , (2n)∗}. It is easy
to see that|A2n| = 0 and

|A2n+1| = (2n)!
n!

(2n + 2)!
(n + 1)! = tntn+1.

We are now ready to give an involution for the following labelled version of
Theorem 1.1. Let Qe(n) (Qo(n), respectively) be the number of labelled trees withn edges
and an even (odd, respectively) number of leaves.

Theorem 3.1. The following relations hold.

Qe(2n) − Qo(2n) = 0

Qe(2n + 1) − Qo(2n + 1) = (−1)n+1|A2n+1|.
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Fig. 3. Involution Ψ on labelled plane trees.

Proof. We define the sign of a labelled plane tree in the same way as in the unlabelled case.
The involutionΨ is built on the set of labelled plane trees whose match decompositions
contain a match with mixed vertices (one marked, the other unmarked). Given such a plane
treeT , we decompose it into matches. Then we choose the match with mixed vertices such
that the unmarked vertex is minimum. The involution simply turns the chosen match up
sidedown; seeFig. 3. Note that the number of leaves of a plane treeT equals the number
of unmarked leaves of the matches in the corresponding decomposition; see [1]. �

4. An involution on 2-Motzkin paths

The notion of 2-Motzkin paths has proved to be a very useful representation of several
combinatorial objects such as Dyck paths, plane trees, noncrossing partitions [4]. For the
purpose of this paper, we need the bijection between 2-Motzkin paths and plane trees.
Recall that a 2-Motzkin path is a lattice path starting and ending on the horizontal axis but
never going below it, with up steps(1, 1), levelsteps(1, 0) and down steps(1,−1), where
the level steps can be of either of two kinds: straight and wavy. Thelength of a path is
defined to be the number of its steps. The set of 2-Motzkin paths of lengthn −1 is denoted
byMn. The following bijection is given in [4].

Lemma 4.1. There is a bijection between plane trees with n edges and 2-Motzkin paths
of length n − 1, such that the number of leaves of a plane tree minus 1 equals the sum of
the number of up steps and the number of wavy level steps in the corresponding 2-Motzkin
path.

Note that the set of 2-Motzkin paths without level steps reduces to the set of Dyck
paths [8]. We useDn to denote the set of 2-Motzkin paths of lengthn − 1 without level
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Fig. 4. Involution Υ on 2-Motzkin paths.

steps, namely, the set of Dyck paths of lengthn − 1. Obviously,Dn is empty ifn is even
and

|D2n+1| = cn.

We obtain the following involution on the set of 2-Motzkin paths which gives the third
combinatorial interpretation of the relations (1.1) and (1.2). Note that the parity of a 2-
Motzkin path is meant to be the parity of one plus the sum of the number of up steps and
thenumber of wavy steps, as indicated by the aboveLemma 4.1.

Theorem 4.2. There is a parity reversing involution Υ on Mn \ Dn.

Proof. For any 2-Motzkin path inMn \Dn , we find the first level step and toggle this step
between wavy and straight seeFig. 4. �

It is clear that the above involution Υ changes the parity of the number of wavy steps
and keeps the number of up steps invariant. We note that the above involution is different
from the first involution as given inSection 2.

Remark. Chen, Deutsch and Elizalde [11] recently found a bijection between plane trees
with n edges and 2-Motzkin paths of lengthn − 1 such that the non-rightmost leaves are
corresponded to wavy steps. Recall that a leaf issaid to be rightmost if it is the rightmost
child of its parent.

Our third involution on 2-Motzkin paths canbe used to give a combinatorial proof for
the following identities of Sun [13] which are derived by using generating functions:

Theorem 4.3 ([13]). Let Tn,k be the number of Dyck paths of length 2n with k udu’s. Then
we have∑

k even

T2n,k =
∑
k odd

T2n,k,

∑
k even

T2n−1,k =
∑
k odd

T2n−1,k + cn−1.
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