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Abstract

The poblem of counting plane trees withedges and an even or an odd number of leaves has been
recently studied by Eu, Liu and Yeh, in connectioithaan identity on colorig nets due to Stanley.
This identity was also obtained by Bonin, Shapiro and Simion in their study of Schréder paths, and
it was recently derived by Coker using the Lagrange inversion formula. An equivalent problem for
patitions was independently studied by Klazar. We present three parity reversing involutions, one
for unlabelled plane tregetheother for labelled plane trees and one for 2-Motzkin paths which are
in one-to-one correspondence with Dyck paths.
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1. Introduction

The set of unlabelled (rooted) plane trees witbdges is denoted I, and is counted
by the Catalan number

1 2n
an .
n+1\n

The reader is referred to the survey of Stan&9][and rderences therein for combinatorial
objects enumerated by the @&tn numbers. In a recent paper by Eu, Liu and ¥ahthe
authors consider the problem of counting plane trees with further specification on the parity
of the number of leaves. Lé%(n) (Py(n), resgectively) denote the number of plane trees
with n edges and an even (odd, respectively) number of leaves. Eu, Liu and Yeh obtain the
following result byusing generating functions.

Theorem 1.1 (Eu-Liu-Yeh). The following relations hold,

Pe(2n+ 1) — Po(2n+ 1) = (—-1)"cy. (1.2)

Clearly, from the above theorem one can exprBs8) and Py(n) in terms of the
Catalan numbers. Note that this identity was also obtained by Bonin, Shapiro and Simion
[1Q] in their study of Schréder paths, and it was recently derived by Cdi&uging the
Lagrange inversion formula. Klaza][also uses gasrating functions to derive equivalent
results for set partitions with restrictions on the parity of the number of blocks. In fact,
plane trees wittn edges and leaves are in one-to-one correspondence with noncrossing
patitions of {1, ..., n} with k blocks ,7].

Two conbinatorial proofs of the relationl(1) are given in §]. The relation {.2) is
analogous to an identity of Stanleg][on coloring nets. It is shown in5] that (1.2) is
equivalent to that of Stanley by a correspondence of Deujamn[equidistribution of the
number of even-level vertices and the number of leaves on the set of plane trees with
edges.

The objective of this paper is to give three parity reversing involutions for both the
relaions (L.1) and (1.2); the first involtion is based on unlabed plane trees, and the
second is based on labelled plane trees and a decomposition algoritiin hé last
involution is based on a bijection between 2-Motzkin paths and unlabelled plane trees
in [4].

2. Aninvolution on planetrees

We begin with an observation thidor any plane treewith n edges one may attach to
each vertex a leaf as its first child to form a plane tree with+21 edges. We usés,
to denote the set of plane trees withedges such that any leaf is the first child of some
internal vertex and the first child of any arhal vertex must be a leaf. Notice tH3y is
empty ifn is even and

|Bont1| = Cn.
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Our involution is based on the sg% \ B,. We define the arity of a plane tree as the
parity of the number of leaves. Moreover, we define the sign of a plane treé #st is
odd, and as 1 if it is even. For any nonroot verteaf a plane tree, we say thatis legal
if v is an internal vertex, but it is not the first child of some internal vertex, oriff the
first leaf child of some internal vertex. Otherwisds calledillegal. A plane tre€T is said
to belegal if every nonroot vertex oT is legal. In particular,ite plane tree with only one
vertexis illegal. In other words3;, is the set of legal trees withedges.

Theorem 2.1. Thereisa parity reversing involution ¢ on the set Py, \ By.

Proof. The involution can be described recursively. Debe a plandree inP, \ By. We
now conduct a depth first search for an illegal vertexToin the following order: Let
v1, U2, ..., vk be the children of the root of from left to right andT; be the subtree of
T rooted at the vertex; for 1 < i < k. Then we sarch for an illegal vertex ifix. If Tx
is legal, then we conduct the search fix_1, and soon. If T, ..., Tk are all legal, then
the first childvy of T must be an iternal vertex which implies that; is illegal. Using
the above search scheme, we can find an illegal vertek T which is the first vertex
encountered while implementing the above search.

Let u be the father ob andT, be the subtree of rooted at the verten. We now have
two cases. (1) The vertaxis a leaf, but it is not the first child af. (2) The vertex is an
internal vertex, and it is the first child of In thiscase, all the subtrees rooted at the other
children ofu are legal.

For Case 1), letw1, wa, ..., w;j be the clidren of u that are to the left of. We now
cut off the edges betweanandwj, wa, ..., wj, and nove the subtree$,,, ..., T, as
subtrees ofv in the same order. Le®(T) denote theresulting tree. Note that in the search
process ford(T), the vertexv is still the first encountered illegal vertex.

For Case (2), we ay reverse the construction for Case (1). Hence we obtain a parity
reversinginvolution ¢ seeFig. L. O

Note that3o, is empty and any plane tree Byn+1 hasn + 1 leaves. Thenvolution ¢
implies a combinatorial proof of relations.() and (L.2) if the signs of the plane trees are
taken into account. We also note that the involutignis different from the involution of
Eu, Liu and Yeh §] for the relation (L.1).

3. A bijectivealgorithm for labelled trees

In this section, we give a parity reversing involution on labelled plane trees that also
leads to a combinatorial interpretation of the relations for labelled plane trees. Note that
the number of labelled plane tress witledges, on + 1 vertices, equalgn + 1)! times the
number of unlabelled plane trees wittedges, which we denote by

(2n)!

tn == (n + 1)!Cn == n!

In [1], the author gives a bijective algorithm for decomposing a labelled plane tree
on{l,2,...,n+ 1} into a setF of n matches vth labels{1,...,n,n + 1, (n +
2)*, ..., (2n)*}, where a math is a rooted tree with two vertices. The reverse procedure of
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Fig. 1. Involution @ on plane trees.
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Fig. 2. A horizontal merge and vertical merge.

the decomposition algorithm is the following merging algorithm. We start with & st

matchesorl,...,n+ 1, (n+ 2)*, ..., (2n)*}. A vertex labded by a marks is called a
marked vertex.

(1) Find he treeT with the smallest root in which no vertex is marked. Léte the root
of T.

(2) Find he treeT* in F that contains the smallest marked vertex. Lebe this marked
vertex.

(3) If j*isthe oot of T*, then nergeT andT* by identifyingi andj*, keepi as the new
vertex, ad put the subtrees adf* to the right of T. Theoperation$ called ahorizontal

merge. If j* is a leaf of T*, then eplacej* with T in T*. Thisoperation $ called a
vertical merge. SeeFig. 2

(4) Repeat the above procedure uftibecomes a labelled tree.

For any sef~ of n matches lablled by{1,...,n+ 1, (n+ 2)*, ..., (2n)*}, a match is
said to bepure if it consists of either two unmarked vertices or two marked vertices. We
useA, to denote the set of pure matchesfin...,n+1, (n+2)*, ..., (2n)*}. Itis easy
to see thatAon| = 0 and
2n)! (2n + 2)!

n (n+1)!
We are now eady to give an involution for the following labelled version of

Theorem 1.1Let Qe(n) (Qo(N), resgectively) be the number of labelled trees witkdges
and an even (odd, respectively) number of leaves.

|-A2n+1| = = tntn+1.

Theorem 3.1. The following relations hold.

Qe(2n) — Qo(2n) =0
Qe(2n+1) — Qo(2n + 1) = (=)™ Azny1l.
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Fig. 3. Involution ¥ on labelled plane trees.

Proof. We define e sign of a labelled plane tree in the same way as in the unlabelled case.
The involution ¥ is built on the set of labelled plane trees whose match decompositions
contain a match with mixed vertices (one marked, the other unmarked). Given such a plane
treeT, we decompose it into matches. Then we choose the match with mixed vertices such
that the unmarked vertex is minimum. The involution simply turns the chosen match up
sidedown; sedFig. 3. Note hat the number of leaves of a plane tieequals the number

of unmarked leaves of the matches in the corresponding decompositiot].see(]!

4. Aninvolution on 2-Motzkin paths

The notion of 2-Motzkin paths has proved to be a very useful representation of several
combinatorial objects such as Dyck pst plane trees, noncrossing partitiods For the
purpose of this paper, we need the bijecti@tvieen 2-Motzkin paths and plane trees.
Recall that a 2Motzkin path is a lattice path starting and ending on the horizontal axis but
never going below it, with up stefgg, 1), levelsteps(1, 0) and dow stepg1, —1), where
the level steps can be of either of two kinds: straight and wavy.|@mgth of a path is
defined to be the number of its steps. The set of 2-Motzkin paths of lengthis denoted
by M. The fdlowing bijection is given in £].

Lemma4.1. There is a bijection between plane trees with n edges and 2-Motzkin paths
of length n — 1, such that the number of leaves of a plane tree minus 1 equals the sum of
the number of up steps and the number of wavy level stepsin the corresponding 2-Motzkin
path.

Note that the set of 2-Motzkin paths without level steps reduces to the set of Dyck
paths B]. We useDy, to denote the set of 2-Motzkin paths of length— 1 without level
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|

Fig. 4. Involution 7" on 2-Motzkin paths.

steps, namely, the set Byck paths of lengtim — 1. Obviously,D;, is empty ifn is even
and

[Dant1] = Cn.

We obtain the following involution on the set of 2-Motzkin paths which gives the third
combinatorial interpretation of the relationk.l) and (L.2). Note that the parity of a 2-
Motzkin path is meant to be the parity of one plus the sum of the number of up steps and
thenumber of wavy steps, as indicated by the abosema 4.1

Theorem 4.2. Thereisa parity reversing involution 7 on Mp \ Dp.

Proof. For any 2-Motkin path inMp, \ Dy, we find the first level step and toggle this step
between wavy and straight seg. 4. O

It is clear that the laove invdution 7" changes the parity of the number of wavy steps
and keeps the number of up steps invariant. We note that the above involution is different
from the first invdution as given irSection 2

Remark. Chen, Ceutsch and Elizaldelfl] recently found a bijection between plane trees
with n edges and 2-Motzkin paths of length- 1 such bat the non-rightmost leaves are
corresponded to wavy steps. Recall that a leakid to be rightmost if it is the rightmost
child of its parent.

Our third involution on 2-Motzkin paths care used to give a combinatorial proof for
the following identities of Sun13] which are derived by using generating functions:

Theorem 4.3 ([13]). Let Ty k bethe number of Dyck paths of length 2n with k udu’s. Then
we have

Z T2n,k = Z T2n.,k,

k even k odd

Y Tonak= Y Ton-1k+Cna.

k even k odd
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