35,888 research outputs found

    Opportunistic Relaying in Time Division Broadcast Protocol with Incremental Relaying

    Get PDF
    In this paper, we investigate the performance of time division broadcast protocol (TDBC) with incremental relaying (IR) when there are multiple available relays. Opportunistic relaying (OR), i.e., the “best” relay is select for transmission to minimize the system’s outage probability, is proposed. Two OR schemes are presented. The first scheme, termed TDBC-OIR-I, selects the “best” relay from the set of relays that can decode both flows of signal from the two sources successfully. The second one, termed TDBC-OIR-II, selects two “best” relays from two respective sets of relays that can decode successfully each flow of signal. The performance, in terms of outage probability, expected rate (ER), and diversity-multiplexing tradeoff (DMT), of the two schemes are analyzed and compared with two TDBC schemes that have no IR but OR (termed TDBC-OR-I and TDBC-OR-II accordingly) and two other benchmark OR schemes that have no direct link transmission between the two sources

    Hole maximum density droplets of an antidot in strong magnetic fields

    Full text link
    We investigate a quantum antidot in the integer quantum Hall regime (the filling factor is two) by using a Hartree-Fock approach and by transforming the electron antidot into a system which confines holes via an electron-hole transformation. We find that its ground state is the maximum density droplet of holes in certain parameter ranges. The competition between electron-electron interactions and the confinement potential governs the properties of the hole droplet such as its spin configuration. The ground-state transitions between the droplets with different spin configurations occur as magnetic field varies. For a bell-shape antidot containing about 300 holes, the features of the transitions are in good agreement with the predictions of a recently proposed capacitive interaction model for antidots as well as recent experimental observations. We show this agreement by obtaining the parameters of the capacitive interaction model from the Hartree-Fock results. An inverse parabolic antidot is also studied. Its ground-state transitions, however, display different magnetic-field dependence from that of a bell-shape antidot. Our study demonstrates that the shape of antidot potential affects its physical properties significantly.Comment: 12 pages, 11 figure

    Exotic Topological States with Raman-Induced Spin-Orbit Coupling

    Full text link
    We propose a simple experimental scheme to realize simultaneously the one-dimensional spin-orbit coupling and the staggered spin-flip in ultracold pseudospin-1/21/2 atomic Fermi gases trapped in square optical lattices. In the absence of interspecies interactions, the system supports gapped Chern insulators and gapless topological semimetal states. By turning on the ss-wave interactions, a rich variety of gapped and gapless inhomogeneous topological superfluids can emerge. In particular, a gapped topological Fulde-Ferrell superfluid, in which the chiral edge states at opposite boundaries possess the same chirality, is predicted.Comment: 11 pages, 6 figure
    • …
    corecore