1,769 research outputs found

    Discontinuous percolation transitions in real physical systems

    Full text link
    We study discontinuous percolation transitions (PT) in the diffusion-limited cluster aggregation model of the sol-gel transition as an example of real physical systems, in which the number of aggregation events is regarded as the number of bonds occupied in the system. When particles are Brownian, in which cluster velocity depends on cluster size as vssηv_s \sim s^{\eta} with η=0.5\eta=-0.5, a larger cluster has less probability to collide with other clusters because of its smaller mobility. Thus, the cluster is effectively more suppressed in growth of its size. Then the giant cluster size increases drastically by merging those suppressed clusters near the percolation threshold, exhibiting a discontinuous PT. We also study the tricritical behavior by controlling the parameter η\eta, and the tricritical point is determined by introducing an asymmetric Smoluchowski equation.Comment: 5 pages, 5 figure

    Radial Spin Helix in Two-Dimensional Electron Systems with Rashba Spin-Orbit Coupling

    Full text link
    We suggest a long-lived spin polarization structure, a radial spin helix, and study its relaxation dynamics. For this purpose, starting with a simple and physically clear consideration of spin transport, we derive a system of equations for spin polarization density and find its general solution in the axially symmetric case. It is demonstrated that the radial spin helix of a certain period relaxes slower than homogeneous spin polarization and plain spin helix. Importantly, the spin polarization at the center of the radial spin helix stays almost unchanged at short times. At longer times, when the initial non-exponential relaxation region ends, the relaxation of the radial spin helix occurs with the same time constant as that describing the relaxation of the plain spin helix.Comment: 9 pages, 7 figure

    The role of the nature of the noise in the thermal conductance of mechanical systems

    Full text link
    Focussing on a paradigmatic small system consisting of two coupled damped oscillators, we survey the role of the L\'evy-It\^o nature of the noise in the thermal conductance. For white noises, we prove that the L\'evy-It\^o composition (Lebesgue measure) of the noise is irrelevant for the thermal conductance of a non-equilibrium linearly coupled chain, which signals the independence between mechanical and thermodynamical properties. On the other hand, for the non-linearly coupled case, the two types of properties mix and the explicit definition of the noise plays a central role.Comment: 9 pages, 2 figures. To be published in Physical Review

    Analog approach for the eigen-decomposition of positive definite matrices

    Get PDF
    AbstractThis paper proposes an analog approach for performing the eigen-decomposition of positive definite matrices. We show analytically and by simulations that the proposed circuit is guaranteed to converge to the desired eigenvectors and eigenvalues of positive definite matrices

    Energy distribution and cooling of a single atom in an optical tweezer

    Full text link
    We investigate experimentally the energy distribution of a single rubidium atom trapped in a strongly focused dipole trap under various cooling regimes. Using two different methods to measure the mean energy of the atom, we show that the energy distribution of the radiatively cooled atom is close to thermal. We then demonstrate how to reduce the energy of the single atom, first by adiabatic cooling, and then by truncating the Boltzmann distribution of the single atom. This provides a non-deterministic way to prepare atoms at low microKelvin temperatures, close to the ground state of the trapping potential.Comment: 9 pages, 6 figures, published in PR

    Charged particle display

    Full text link
    An optical shutter based on charged particles is presented. The output light intensity of the proposed device has an intrinsic dependence on the interparticle spacing between charged particles, which can be controlled by varying voltages applied to the control electrodes. The interparticle spacing between charged particles can be varied continuously and this opens up the possibility of particle based displays with continuous grayscale.Comment: typographic errors corrected in Eqs (37) and (39); published in Journal of Applied Physics; doi:10.1063/1.317648

    The ideal gas as an urn model: derivation of the entropy formula

    Full text link
    The approach of an ideal gas to equilibrium is simulated through a generalization of the Ehrenfest ball-and-box model. In the present model, the interior of each box is discretized, {\it i.e.}, balls/particles live in cells whose occupation can be either multiple or single. Moreover, particles occasionally undergo random, but elastic, collisions between each other and against the container walls. I show, both analitically and numerically, that the number and energy of particles in a given box eventually evolve to an equilibrium distribution WW which, depending on cell occupations, is binomial or hypergeometric in the particle number and beta-like in the energy. Furthermore, the long-run probability density of particle velocities is Maxwellian, whereas the Boltzmann entropy lnW\ln W exactly reproduces the ideal-gas entropy. Besides its own interest, this exercise is also relevant for pedagogical purposes since it provides, although in a simple case, an explicit probabilistic foundation for the ergodic hypothesis and for the maximum-entropy principle of thermodynamics. For this reason, its discussion can profitably be included in a graduate course on statistical mechanics.Comment: 17 pages, 3 figure

    Dynamic roughening and fluctuations of dipolar chains

    Get PDF
    Nonmagnetic particles in a carrier ferrofluid acquire an effective dipolar moment when placed in an external magnetic field. This fact leads them to form chains that will roughen due to Brownian motion when the magnetic field is decreased. We study this process through experiments, theory and simulations, three methods that agree on the scaling behavior over 5 orders of magnitude. The RMS width goes initially as t1/2t^{1/2}, then as t1/4t^{1/4} before it saturates. We show how these results complement existing results on polymer chains, and how the chain dynamics may be described by a recent non-Markovian formulation of anomalous diffusion.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Fcc-bcc transition for Yukawa interactions determined by applied strain deformation

    Full text link
    Calculations of the work required to transform between bcc and fcc phases yield a high-precision bcc-fcc transition line for monodisperse point Yukawa (screened-Couloumb) systems. Our results agree qualitatively but not quantitatively with previously published simulations and phenomenological criteria for the bcc-fcc transition. In particular, the bcc-fcc-fluid triple point lies at a higher inverse screening length than previously reported.Comment: RevTex4, 9 pages, 6 figures. Discussion of phase coexistence extended, a few other minor clarifications added, referencing improved. Accepted for publication by Physical Review

    A mechanical Turing machine: blueprint for a biomolecular computer

    Get PDF
    We describe a working mechanical device that embodies the theoretical computing machine of Alan Turing, and as such is a universal programmable computer. The device operates on three-dimensional building blocks by applying mechanical analogues of polymer elongation, cleavage and ligation, movement along a polymer, and control by molecular recognition unleashing allosteric conformational changes. Logically, the device is not more complicated than biomolecular machines of the living cell, and all its operations are part of the standard repertoire of these machines; hence, a biomolecular embodiment of the device is not infeasible. If implemented, such a biomolecular device may operate in vivo, interacting with its biochemical environment in a program-controlled manner. In particular, it may ‘compute’ synthetic biopolymers and release them into its environment in response to input from the environment, a capability that may have broad pharmaceutical and biological applications
    corecore