77,743 research outputs found

    Development of a novel virtual coordinate measuring machine

    Get PDF
    Existing VCMMs (virtual coordinate measuring machine) have been mainly developed to either simulate the measurement process hence enabling the off-line programming, or to perform error analysis and uncertainty evaluation. Their capability and performance could be greatly improved if there is a complete solution to cover the whole process and provide an integrated environment. The aim of this study is to develop such a VCMM that not only supports measurement process simulation, but also performs uncertainty evaluation. It makes use of virtual reality techniques to provide an accurate model of a physical CMM, together with uncertainty evaluation. An interface is also provided to communicate with CMM controller, allowing the measuring programs generated and simulated in the VCMM to be executed or tested on the physical CMM afterwards. This paper discusses the proposal of a novel VCMM design and the preliminary results

    Design, implementation, and testing of advanced virtual coordinate-measuring machines

    Get PDF
    Copyright @ 2011 IEEE. This article has been made available through the Brunel Open Access Publishing Fund.Advanced virtual coordinate-measuring machines (CMMs) (AVCMMs) have recently been developed at Brunel University, which provide vivid graphical representation and powerful simulation of CMM operations, together with Monte-Carlo-based uncertainty evaluation. In an integrated virtual environment, the user can plan an inspection strategy for a given task, carry out virtual measurements, and evaluate the uncertainty associated with the measurement results, all without the need of using a physical machine. The obtained estimate of uncertainty can serve as a rapid feedback for the user to optimize the inspection plan in the AVCMM before actual measurements or as an evaluation of the measurement results performed. This paper details the methodology, design, and implementation of the AVCMM system, including CMM modeling, probe contact and collision detection, error modeling and simulation, and uncertainty evaluation. This paper further reports experimental results for the testing of the AVCMM

    The structural, mechanical, electronic, optical and thermodynamic properties of t-X3_{3}As4_{4} (X == Si, Ge and Sn) by first-principles calculations

    Full text link
    The structural, mechanical, electronic, optical and thermodynamic properties of the t-X3_{\mathrm{3}}As4_{\mathrm{4}} (X == Si, Ge and Sn) with tetragonal structure have been investigated by first principles calculations. Our calculated results show that these compounds are mechanically and dynamically stable. By the study of elastic anisotropy, it is found that the anisotropic of the t-Sn3_{\mathrm{3}}As4_{\mathrm{4}} is stronger than that of t-Si3_{\mathrm{3}}As4_{\mathrm{4}} and t-Ge3_{\mathrm{3}}As4_{\mathrm{4}}. The band structures and density of states show that the t-X3_{\mathrm{3}}As4_{\mathrm{4}} (Si, Ge and Sn) are semiconductors with narrow band gaps. Based on the analyses of electron density difference, in t-X3_{\mathrm{3}}As4_{\mathrm{4}} As atoms get electrons, X atoms lose electrons. The calculated static dielectric constants, ε1(0)\varepsilon_{1} (0), are 15.5, 20.0 and 15.1 eV for t-X3_{\mathrm{3}}As4_{\mathrm{4}} (X == Si, Ge and Sn), respectively. The Dulong-Petit limit of t-X3_{\mathrm{3}}As4_{\mathrm{4}} is about 10 J mol1^{\mathrm{-1}}K1^{\mathrm{-1}}. The thermodynamic stability successively decreases from t-Si3_{\mathrm{3}}As4_{\mathrm{4}} to t-Ge3_{\mathrm{3}}As4_{\mathrm{4}} to t-Sn3_{\mathrm{3}}As4_{\mathrm{4}}.Comment: 14 pages, 10 figures, 6 table

    Out of plane effect on the superconductivity of Sr2-xBaxCuO3+y with Tc up to 98K

    Full text link
    A series of new Sr2-xBaxCuO3+y (0 x 0.6) superconductors were prepared using high-pressure and high-temperature synthesis. A Rietveld refinement based on powder x-ray diffraction confirms that the superconductors crystallize in the K2NiF4-type structure of a space group I4/mmm similar to that of La2CuO4 but with partially occupied apical oxygen sites. It is found that the superconducting transition temperature Tc of this Ba substituted Sr2CuO3+y superconductor with constant carrier doping level, i.e., constant d, is controlled not only by order/disorder of apical-O atoms but also by Ba content. Tcmax =98 K is achieved in the material with x=0.6 that reaches the record value of Tc among the single-layer copper oxide superconductors, and is higher than Tc=95K of Sr2CuO3+y with optimally ordered apical-O atoms. There is Sr-site disorder in Sr2-xBaxCuO3+y which might lead to a reduction of Tc. The result indicates that another effect surpasses the disorder effect that is related either to the increased in-plane Cu-O bond length or to elongated apical-O distance due to Ba substitution with larger cation size. The present experiment demonstrates that the optimization of local geometry out of the Cu-O plane can dramatically enhance Tc in the cuprate superconductors.Comment: 23 Pages, 1 Table, 5 Figure

    Research on 2×2 MIMO Channel with Truncated Laplacian Azimuth Power Spectrum

    Get PDF
    Multiple-input multiple-output (MIMO) Rayleigh fading channel with truncated Laplacian azimuth power spectrum (APS) is studied. By using the power correlation matrix of MIMO channel model and the modified Jakes simulator, into which with random phases are inserted, the effect of the azimuth spread (AS), angle of departure (AOD) and angle of arrival (AOA) on the spatial correlation coefficient and channel capacity are investigated. Numerical results show that larger AS generates smaller spatial correlation coefficient amplitude, while larger average AOD or AOA produces larger spatial correlation coefficient amplitude. The average capacity variation is comprehensively dominated by the average AOD, AOA and AS

    Distributed Flow Scheduling in an Unknown Environment

    Full text link
    Flow scheduling tends to be one of the oldest and most stubborn problems in networking. It becomes more crucial in the next generation network, due to fast changing link states and tremendous cost to explore the global structure. In such situation, distributed algorithms often dominate. In this paper, we design a distributed virtual game to solve the flow scheduling problem and then generalize it to situations of unknown environment, where online learning schemes are utilized. In the virtual game, we use incentives to stimulate selfish users to reach a Nash Equilibrium Point which is valid based on the analysis of the `Price of Anarchy'. In the unknown-environment generalization, our ultimate goal is the minimization of cost in the long run. In order to achieve balance between exploration of routing cost and exploitation based on limited information, we model this problem based on Multi-armed Bandit Scenario and combined newly proposed DSEE with the virtual game design. Armed with these powerful tools, we find a totally distributed algorithm to ensure the logarithmic growing of regret with time, which is optimum in classic Multi-armed Bandit Problem. Theoretical proof and simulation results both affirm this claim. To our knowledge, this is the first research to combine multi-armed bandit with distributed flow scheduling.Comment: 10 pages, 3 figures, conferenc
    corecore