1,433 research outputs found
Fluctuation, time-correlation function and geometric Phase
We establish a fluctuation-correlation theorem by relating the quantum
fluctuations in the generator of the parameter change to the time integral of
the quantum correlation function between the projection operator and force
operator of the ``fast'' system. By taking a cue from linear response theory we
relate the quantum fluctuation in the generator to the generalised
susceptibility. Relation between the open-path geometric phase, diagonal
elements of the quantum metric tensor and the force-force correlation function
is provided and the classical limit of the fluctuation-correlation theorem is
also discussed.Comment: Latex, 12 pages, no figures, submitted to J. Phys. A: Math & Ge
Symmetry crossover and excitation thresholds at the neutral-ionic transition of the modified Hubbard model
Exact ground states, charge densities and excitation energies are found using
valence bond methods for N-site modified Hubbard models with uniform spacing.
At the neutral-ionic transition (NIT), the ground state has a symmetry
crossover in 4n, 4n+2 rings with periodic and antiperiodic boundary conditions,
respectively. The modified Hubbard model has a continuous NIT between a
diamagnetic band insulator on the paired side and a paramagnetic Mott insulator
on the covalent side. The singlet-triplet (ST), singlet-singlet (SS) and charge
gaps for finite N indicate that the ST and SS gaps close at the NIT with
increasing U and that the charge gap vanishes only there. Finite-N excitations
constrain all singularities to about 0.1t of the symmetry crossover. The NIT is
interpreted as a localized ground state (gs) with finite gaps on the paired
side and an extended gs with vanishing ST and SS gaps on the covalent side. The
charge gap and charge stiffness indicate a metallic gs at the transition that,
however, is unconditionally unstable to dimerization.Comment: 12 pages, including 8 figure
Dynamics of two atoms coupled to a cavity field
We investigate the interaction of two two-level atoms with a single mode
cavity field. One of the atoms is exactly at resonance with the field, while
the other is well far from resonance and hence is treated in the dispersive
limit. We find that the presence of the non-resonant atom produces a shift in
the Rabi frequency of the resonant atom, as if it was detuned from the field.
We focus on the discussion of the evolution of the state purity of each atom.Comment: LaTex, 2 figure
General impossible operations in quantum information
We prove a general limitation in quantum information that unifies the
impossibility principles such as no-cloning and no-anticloning. Further, we
show that for an unknown qubit one cannot design a universal Hadamard gate for
creating equal superposition of the original and its complement state.
Surprisingly, we find that Hadamard transformations exist for an unknown qubit
chosen either from the polar or equatorial great circles. Also, we show that
for an unknown qubit one cannot design a universal unitary gate for creating
unequal superpositions of the original and its complement state. We discuss why
it is impossible to design a controlled-NOT gate for two unknown qubits and
discuss the implications of these limitations.Comment: 15 pages, no figures, Discussion about personal quantum computer
remove
Observing Nucleon Decay in Lead Perchlorate
Lead perchlorate, part of the OMNIS supernova neutrino detector, contains two
nuclei, 208Pb and 35Cl, that might be used to study nucleon decay. Both would
produce signatures that will make them especially useful for studying
less-well-studied neutron decay modes, e.g., those in which only neutrinos are
emitted.Comment: 6 pages, 2 figure
- …