7,159 research outputs found

    Constrained Variation Method in Molecular Quantum Mechanics. Comparison of Different Approaches

    Get PDF
    Constrained variation method in molecular quantum mechanics and results for lithium hydrid

    Role of structural relaxations and vibrational excitations in the high-frequency dynamics of liquids and glasses

    Full text link
    We present theoretical investigation on the high-frequency collective dynamics in liquids and glasses at microscopic length scales and terahertz frequency region based on the mode-coupling theory for ideal liquid-glass transition. We focus on recently investigated issues from inelastic-X-ray-scattering and computer-simulation studies for dynamic structure factors and longitudinal and transversal current spectra: the anomalous dispersion of the high-frequency sound velocity and the nature of the low-frequency excitation called the boson peak. It will be discussed how the sound mode interferes with other low-lying modes present in the system. Thereby, we provide a systematic explanation of the anomalous sound-velocity dispersion in systems -- ranging from high temperature liquid down to deep inside the glass state -- in terms of the contributions from the structural-relaxation processes and from vibrational excitations called the anomalous-oscillation peak (AOP). A possibility of observing negative dispersion -- the {\em decrease} of the sound velocity upon increase of the wave number -- is argued when the sound-velocity dispersion is dominated by the contribution from the vibrational dynamics. We also show that the low-frequency excitation, observable in both of the glass-state longitudinal and transversal current spectra at the same resonance frequency, is the manifestation of the AOP. As a consequence of the presence of the AOP in the transversal current spectra, it is predicted that the transversal sound velocity also exhibits the anomalous dispersion. These results of the theory are demonstrated for a model of the Lennard-Jones system.Comment: 25 pages, 22 figure

    Steady-state Ab Initio Laser Theory: Generalizations and Analytic Results

    Full text link
    We improve the steady-state ab initio laser theory (SALT) of Tureci et al. by expressing its fundamental self-consistent equation in a basis set of threshold constant flux states that contains the exact threshold lasing mode. For cavities with non-uniform index and/or non-uniform gain, the new basis set allows the steady-state lasing properties to be computed with much greater efficiency. This formulation of the SALT can be solved in the single-pole approximation, which gives the intensities and thresholds, including the effects of nonlinear hole-burning interactions to all orders, with negligible computational effort. The approximation yields a number of analytic predictions, including a "gain-clamping" transition at which strong modal interactions suppress all higher modes. We show that the single-pole approximation agrees well with exact SALT calculations, particularly for high-Q cavities. Within this range of validity, it provides an extraordinarily efficient technique for modeling realistic and complex lasers.Comment: 17 pages, 11 figure

    Reflection-Free One-Way Edge Modes in a Gyromagnetic Photonic Crystal

    Full text link
    We point out that electromagnetic one-way edge modes analogous to quantum Hall edge states, originally predicted by Raghu and Haldane in 2D gyroelectric photonic crystals possessing Dirac point-derived bandgaps, can appear in more general settings. In particular, we show that the TM modes in a gyromagnetic photonic crystal can be formally mapped to electronic wavefunctions in a periodic electromagnetic field, so that the only requirement for the existence of one-way edge modes is that the Chern number for all bands below a gap is non-zero. In a square-lattice gyromagnetic Yttrium-Iron-Garnet photonic crystal operating at microwave frequencies, which lacks Dirac points, time-reversal breaking is strong enough that the effect should be easily observable. For realistic material parameters, the edge modes occupy a 10% band gap. Numerical simulations of a one-way waveguide incorporating this crystal show 100% transmission across strong defects, such as perfect conductors several lattice constants wide, larger than the width of the waveguide.Comment: 4 pages, 3 figures (Figs. 1 and 2 revised.

    Renewable Energy from Living Plants to Power IoT Sensor for Remote Sensing

    Get PDF
    Renewable energy which can be used to replace traditional energy sources from fossil fuel is in dire demand to protect the earth from the further negative effect of climate change resulting from mining or drilling of fossil fuel and its related pollution. There are various renewable energy sources available, however, there is none currently that does not compete for arable land in nature or land for food production to enable the installation of the renewable energy facility. Thus, in this research, it is proposed a novel type of electrical energy which can be harvested from living plants and coexist well with nature without competing for any arable lands and at the same time generate energy for human needs. Plants generate energy from photosynthesis, respiration, and intercellular activities, and this energy, although is minute, still can be harvested as a new potential energy source to power any ultra-low power sensor for remote sensing purposes. Thus, it is presented in this paper, a characterization of the specific setup condition to harvest optimum minimum 3V from living plants and a power management circuit that can further boost the energy to an optimum level to power a wireless IoT sensor for remote sensing purposes. It turns the living plant into a plant-based cell. As there is wide vegetation in forests, jungles, plantations, and agricultural lands on earth, the combination of this energy from the plants could be a promising source of new renewable energy to mankind as this vegetation can exist for both food and energy production while it does not compete for arable land for the installation of energy sources such as what happens in fossil fuel, solar or wind energy to create greener earth

    A Bibliometric Review on Risk Management and Building Information Modeling for International Construction

    Get PDF
    International construction is complicated and involves high risks. However, with the development of technological innovation, Building Information Modeling (BIM) emerged and seems to be able to address certain risks. To understand BIM applications in risk management for international construction, a state-of-the-art review is required. Therefore, this paper aims to identify the research trends and opportunities for risk management in BIM-enabled international construction by reviewing 526 peer-reviewed journal articles for the years 2007-2017. Thus five steps of bibliometric analysis were conducted based on the proposed frameworks of BIM risk management in international construction (BIM-RM-INTL). The results show that the popularization of BIM not only attracts all stakeholders' interests but also brings some risks. For example, financial factors are hard to detect and control through BIM, information loss during transmission stands out, and BIM has no unified standards and regulations for international construction. The research has mapped existing research results and their relationships for future risk management in BIM-enabled international construction

    Composting paper and grass clippings with anaerobically treated palm oil mill effluent

    Get PDF
    Purpose The purpose of this study is to investigate the composting performance of anaerobically treated palm oil mill effluent (AnPOME) mixed with paper and grass clippings. Methods Composting was conducted using a laboratory scale system for 40 days. Several parameters were determined: temperature, mass reduction, pH, electrical conductivity, colour, zeta potential, phytotoxicity and final compost nutrients. Results The moisture content and compost mass were reduced by 24 and 18 %, respectively. Both final compost pH value and electrical conductivity were found to increase in value. Colour (measured as PtCo) was not suitable as a maturity indicator. The negative zeta potential values decreased from −12.25 to −21.80 mV. The phytotoxicity of the compost mixture was found to decrease in value during the process and the final nutrient value of the compost indicates its suitability as a soil conditioner. Conclusions From this study, we conclude that the addition of paper and grass clippings can be a potential substrate to be composted with anaerobically treated palm oil mill effluent (AnPOME). The final compost produced is suitable for soil conditioner

    A scalar field instability of rotating and charged black holes in (4+1)-dimensional Anti-de Sitter space-time

    Full text link
    We study the stability of static as well as of rotating and charged black holes in (4+1)-dimensional Anti-de Sitter space-time which possess spherical horizon topology. We observe a non-linear instability related to the condensation of a charged, tachyonic scalar field and construct "hairy" black hole solutions of the full system of coupled Einstein, Maxwell and scalar field equations. We observe that the limiting solution for small horizon radius is either a hairy soliton solution or a singular solution that is not a regular extremal solution. Within the context of the gauge/gravity duality the condensation of the scalar field describes a holographic conductor/superconductor phase transition on the surface of a sphere.Comment: 16 pages including 8 figures, v2: discussion on soliton solutions extended; v3: matches version accepted for publication in JHE

    Temperature and Safety Profiles of Needle-Warming Techniques in Acupuncture and Moxibustion

    Get PDF
    The needle-warming technique combines acupuncture and moxibustion, and it is commonly practised in China to relieve pain conditions. However, burning of moxa has many disadvantages. This study examined the temperature and safety profiles of such technique. First, skin temperature changes during needle-warming were examined in anesthetized animals to determine the safe distance for needle-warming moxibustion in human subjects. Then, the practical distance for needle-warming in human subjects were verified. Finally, the temperature profiles of the needle during needle-warming moxibustion were examined using an infrared camera. Our results show that during needle-warming moxibustion there is little heat being conducted into deep tissue via the shaft of the needle, and that the effective heating time to the acupoint is rather short compared to the period of moxibustion. These findings suggest that the needle-warming technique is an inefficient way of acupoint thermal stimulation and should be modified and improved using new technologies
    • 

    corecore