492 research outputs found
Charge and spin ordering in Nd{1/3}Sr{2/3}FeO{3}
We have investigated the charge and spin ordering in Nd{1/3}Sr{2/3}FeO{3}
with neutron diffraction technique. This sample undergoes a charge ordering
transition accompanying charge disproportionation of 2Fe4+ -> Fe3+ + Fe5+. We
measured the superlattice reflections due to the charge and spin ordering, and
confirmed that charges and spins order simultaneously at Tco = 185 K. The
ordering pattern of charges and spins in this sample can be viewed as three
dimensional stripe order, and is compared with two dimensional stripe order
observed in other transition metal oxides.Comment: REVTeX, 4 pages, 3 figures, to be published in J. Phys. Chem. Solid
Excitation of the odd-parity quasi-normal modes of compact objects
The gravitational radiation generated by a particle in a close unbounded
orbit around a neutron star is computed as a means to study the importance of
the modes of the neutron star. For simplicity, attention is restricted to
odd parity (``axial'') modes which do not couple to the neutron star's fluid
modes. We find that for realistic neutron star models, particles in unbounded
orbits only weakly excite the modes; we conjecture that this is also the
case for astrophysically interesting sources of neutron star perturbations. We
also find that for cases in which there is significant excitation of quadrupole
modes, there is comparable excitation of higher multipole modes.Comment: 18 pages, 21 figures, submitted to Phys. Rev.
Gravitational waves from a test particle scattered by a neutron star: Axial mode case
Using a metric perturbation method, we study gravitational waves from a test
particle scattered by a spherically symmetric relativistic star. We calculate
the energy spectrum and the waveform of gravitational waves for axial modes.
Since metric perturbations in axial modes do not couple to the matter fluid of
the star, emitted waves for a normal neutron star show only one peak in the
spectrum, which corresponds to the orbital frequency at the turning point,
where the gravitational field is strongest. However, for an ultracompact star
(the radius ), another type of resonant periodic peak appears in
the spectrum. This is just because of an excitation by a scattered particle of
axial quasinormal modes, which were found by Chandrasekhar and Ferrari. This
excitation comes from the existence of the potential minimum inside of a star.
We also find for an ultracompact star many small periodic peaks at the
frequency region beyond the maximum of the potential, which would be due to a
resonance of two waves reflected by two potential barriers (Regge-Wheeler type
and one at the center of the star). Such resonant peaks appear neither for a
normal neutron star nor for a Schwarzschild black hole. Consequently, even if
we analyze the energy spectrum of gravitational waves only for axial modes, it
would be possible to distinguish between an ultracompact star and a normal
neutron star (or a Schwarzschild black hole).Comment: 21 pages, revtex, 11 figures are attached with eps files Accepted to
Phys. Rev.
Anomalous ferromagnetic spin fluctuations in an antiferromagnetic insulator Pr_{1-x}Ca_{x}MnO_{3}
The high temperature paramagnetic state in an antiferromagnetic (AFM)
insulator Pr_{1-x}Ca_{x}MnO_{3} is characterized by the ferromagnetic (FM) spin
fluctuations with an anomalously small energy scale. The FM fluctuations show a
precipitous decrease of the intensity at the charge ordering temperature
T_{CO}, but persist below T_{CO}, and vanish at the AFM transition temperature
T_{N}. These results demonstrate the importance of the spin ordering for the
complete switching of the FM fluctuation in doped manganites.Comment: REVTeX, 5 pages, 4 figures, submitted to Phys. Rev.
Matter flows around black holes and gravitational radiation
We develop and calibrate a new method for estimating the gravitational
radiation emitted by complex motions of matter sources in the vicinity of black
holes. We compute numerically the linearized curvature perturbations induced by
matter fields evolving in fixed black hole backgrounds, whose evolution we
obtain using the equations of relativistic hydrodynamics. The current
implementation of the proposal concerns non-rotating holes and axisymmetric
hydrodynamical motions. As first applications we study i) dust shells falling
onto the black hole isotropically from finite distance, ii) initially spherical
layers of material falling onto a moving black hole, and iii) anisotropic
collapse of shells. We focus on the dependence of the total gravitational wave
energy emission on the flow parameters, in particular shell thickness, velocity
and degree of anisotropy. The gradual excitation of the black hole quasi-normal
mode frequency by sufficiently compact shells is demonstrated and discussed. A
new prescription for generating physically reasonable initial data is
discussed, along with a range of technical issues relevant to numerical
relativity.Comment: 27 pages, 12 encapsulated figures, revtex, amsfonts, submitted to
Phys. Rev.
- …