421 research outputs found

    Charge and spin ordering in Nd{1/3}Sr{2/3}FeO{3}

    Full text link
    We have investigated the charge and spin ordering in Nd{1/3}Sr{2/3}FeO{3} with neutron diffraction technique. This sample undergoes a charge ordering transition accompanying charge disproportionation of 2Fe4+ -> Fe3+ + Fe5+. We measured the superlattice reflections due to the charge and spin ordering, and confirmed that charges and spins order simultaneously at Tco = 185 K. The ordering pattern of charges and spins in this sample can be viewed as three dimensional stripe order, and is compared with two dimensional stripe order observed in other transition metal oxides.Comment: REVTeX, 4 pages, 3 figures, to be published in J. Phys. Chem. Solid

    Excitation of the odd-parity quasi-normal modes of compact objects

    Get PDF
    The gravitational radiation generated by a particle in a close unbounded orbit around a neutron star is computed as a means to study the importance of the ww modes of the neutron star. For simplicity, attention is restricted to odd parity (``axial'') modes which do not couple to the neutron star's fluid modes. We find that for realistic neutron star models, particles in unbounded orbits only weakly excite the ww modes; we conjecture that this is also the case for astrophysically interesting sources of neutron star perturbations. We also find that for cases in which there is significant excitation of quadrupole ww modes, there is comparable excitation of higher multipole modes.Comment: 18 pages, 21 figures, submitted to Phys. Rev.

    Gravitational waves from a test particle scattered by a neutron star: Axial mode case

    Get PDF
    Using a metric perturbation method, we study gravitational waves from a test particle scattered by a spherically symmetric relativistic star. We calculate the energy spectrum and the waveform of gravitational waves for axial modes. Since metric perturbations in axial modes do not couple to the matter fluid of the star, emitted waves for a normal neutron star show only one peak in the spectrum, which corresponds to the orbital frequency at the turning point, where the gravitational field is strongest. However, for an ultracompact star (the radius R≲3MR \lesssim 3M), another type of resonant periodic peak appears in the spectrum. This is just because of an excitation by a scattered particle of axial quasinormal modes, which were found by Chandrasekhar and Ferrari. This excitation comes from the existence of the potential minimum inside of a star. We also find for an ultracompact star many small periodic peaks at the frequency region beyond the maximum of the potential, which would be due to a resonance of two waves reflected by two potential barriers (Regge-Wheeler type and one at the center of the star). Such resonant peaks appear neither for a normal neutron star nor for a Schwarzschild black hole. Consequently, even if we analyze the energy spectrum of gravitational waves only for axial modes, it would be possible to distinguish between an ultracompact star and a normal neutron star (or a Schwarzschild black hole).Comment: 21 pages, revtex, 11 figures are attached with eps files Accepted to Phys. Rev.

    Anomalous ferromagnetic spin fluctuations in an antiferromagnetic insulator Pr_{1-x}Ca_{x}MnO_{3}

    Full text link
    The high temperature paramagnetic state in an antiferromagnetic (AFM) insulator Pr_{1-x}Ca_{x}MnO_{3} is characterized by the ferromagnetic (FM) spin fluctuations with an anomalously small energy scale. The FM fluctuations show a precipitous decrease of the intensity at the charge ordering temperature T_{CO}, but persist below T_{CO}, and vanish at the AFM transition temperature T_{N}. These results demonstrate the importance of the spin ordering for the complete switching of the FM fluctuation in doped manganites.Comment: REVTeX, 5 pages, 4 figures, submitted to Phys. Rev.

    Matter flows around black holes and gravitational radiation

    Full text link
    We develop and calibrate a new method for estimating the gravitational radiation emitted by complex motions of matter sources in the vicinity of black holes. We compute numerically the linearized curvature perturbations induced by matter fields evolving in fixed black hole backgrounds, whose evolution we obtain using the equations of relativistic hydrodynamics. The current implementation of the proposal concerns non-rotating holes and axisymmetric hydrodynamical motions. As first applications we study i) dust shells falling onto the black hole isotropically from finite distance, ii) initially spherical layers of material falling onto a moving black hole, and iii) anisotropic collapse of shells. We focus on the dependence of the total gravitational wave energy emission on the flow parameters, in particular shell thickness, velocity and degree of anisotropy. The gradual excitation of the black hole quasi-normal mode frequency by sufficiently compact shells is demonstrated and discussed. A new prescription for generating physically reasonable initial data is discussed, along with a range of technical issues relevant to numerical relativity.Comment: 27 pages, 12 encapsulated figures, revtex, amsfonts, submitted to Phys. Rev.
    • …
    corecore