4,669 research outputs found
Optimum design of magnetic field environment for axonal growth control in nerve cell regeneration process using electromagnetic field analyses
In this study, an optimum magnetic field environment for the nerve axonal extension and control of axonal growth direction in the nerve cell generation process was searched by using electromagnetic finite element analyses. Recently, the developments of 3D-scaffold structures employing biodegradable polymers have been an attracting attention for the clinical treatments of damaged nerve tissues. The magnetic stimulation is introduced to accelerate the regeneration speed of nerve axon inside the 3D-scaffold. According to experimental observation of Blackman, C.F. and his research group (1993) [1], it was found that 50 Hz AC magnetic field has promoted the regeneration of axonal extension in the case of pheochromocytoma cells (PC12). They identified the optimum configuration of the coil and the threshold value of driving current for the initiation of PC12 axon growth. However, they did not evaluate analytically the magnetic flux density and the magnetic field in the cell culture liquid for the PC12 axon growth initiation. Therefore, at first we employed the electromagnetic finite element analyses (FEA) to evaluate the magnetic flux density in the case of Blackman’s experiment. Simultaneously, we identified the relative magnetic permeability of Dulbecco’s Modified Eagle Medium (DMEM) as 1.01 at 50 Hz. Finally, we obtained the value of magnetic flux density inside DMEM as 4.2 T. Next, we try to design the configuration of Helmholtz coil, which can generate an optimum magnetic field to stimulate most effectively for PC12 axon extension. It is confirmed that the magnetic field gradient affect the extensional speed of PC12 axon, which can be achieved by setup the one peripheral coil and two coils at the center. We found an optimum configuration of Helmholtz coil to generate the magnetic field environment and fabricate an experimental bioreactor for PC12 cell culture. We examined the effectiveness of magnetic stimulation for PC12 nerve axon’s extension quantitatively. Further, we try to find the relationship between the magnetic field gradient and the direction of nerve axon’s extension
Influence of Mg, Ag and Al substitutions on the magnetic excitations in the triangular-lattice antiferromagnet CuCrO2
Magnetic excitations in CuCrO, CuCrMgO,
CuAgCrO, and CuCrAlO have been
studied by powder inelastic neutron scattering to elucidate the element
substitution effects on the spin dynamics in the Heisenberg triangular-lattice
antiferromagnet CuCrO. The magnetic excitations in
CuCrMgO consist of a dispersive component and a flat
component. Though this feature is apparently similar to CuCrO, the energy
structure of the excitation spectrum shows some difference from that in
CuCrO. On the other hand, in CuAgCrO and
CuCrAlO the flat components are much reduced, the
low-energy parts of the excitation spectra become intense, and additional
low-energy diffusive spin fluctuations are induced. We argued the origins of
these changes in the magnetic excitations are ascribed to effects of the doped
holes or change of the dimensionality in the magnetic correlations.Comment: 7 pages, 5 figure
D-branes and Closed String Field Theory
We construct solitonic states in the OSp invariant string field theory, which
are BRST invariant in the leading order of regularization parameter. One can
show that these solitonic states describe D-branes and ghost D-branes, by
calculating the scattering amplitudes.Comment: 8 pages, 2 figures, based on an invited talk presented at the
international workshop "Progress of String Theory and Quantum Field Theory"
(Osaka City University, December 7-10, 2007), to be published in the
proceeding
Observables and Correlation Functions in OSp Invariant String Field Theory
We define BRST invariant observables in the OSp invariant closed string field
theory for bosonic strings. We evaluate correlation functions of these
observables and show that the S-matrix elements derived from them coincide with
those of the light-cone gauge string field theory.Comment: 23 page
Molecular kinetic analysis of a finite-time Carnot cycle
We study the efficiency at the maximal power of a
finite-time Carnot cycle of a weakly interacting gas which we can reagard as a
nearly ideal gas. In several systems interacting with the hot and cold
reservoirs of the temperatures and , respectively,
it is known that which
is often called the Curzon-Ahlborn (CA) efficiency . For the
first time numerical experiments to verify the validity of
are performed by means of molecular dynamics simulations and reveal that our
does not always agree with , but
approaches in the limit of .
Our molecular kinetic analysis explains the above facts theoretically by using
only elementary arithmetic.Comment: 6 pages, 4 figure
Enhancement of Superconducting Transition Temperature due to the strong Antiferromagnetic Spin Fluctuations in Non-centrosymmetric Heavy-fermion Superconductor CeIrSi3 :A 29Si-NMR Study under Pressure
We report a 29Si-NMR study on the pressure-induced superconductivity (SC) in
an antiferromagnetic (AFM) heavy-fermion compound CeIrSi3 without inversion
symmetry. In the SC state at P=2.7-2.8 GPa, the temperature dependence of the
nuclear-spin lattice relaxation rate 1/T_1 below Tc exhibits a T^3 behavior
without any coherence peak just below Tc, revealing the presence of line nodes
in the SC gap. In the normal state, 1/T_1 follows a \sqrt{T}-like behavior,
suggesting that the SC emerges under the non-Fermi liquid state dominated by
AFM spin fluctuations enhanced around quantum critical point (QCP). The reason
why the maximum Tc in CeIrSi3 is relatively high among the Ce-based
heavy-fermion superconductors may be the existence of the strong AFM spin
fluctuations. We discuss the comparison with the other Ce-based heavy-fermion
superconductors.Comment: 4 pages, 5 figures, To be published in Phys. Rev. Let
Anisotropic magnetic properties of CeAgGe single crystal
In order to investigate the anisotropic magnetic properties of
CeAgGe, we have successfully grown the single crystals, for the first
time, by high temperature solution growth (flux) method. We have performed a
detailed study of the grown single crystals by measuring their electrical
resistivity, magnetic susceptibility, magnetization, specific heat and
magnetoresistance. A clear anisotropy and an antiferromagnetic transition at
= 4.6 K have been observed in the magnetic properties. The magnetic
entropy reaches ln 4 at 20 K indicating that the ground state and the first
excited state are very closely spaced (a quasi-quartet state). From the
specific heat measurements and crystalline electric field (CEF) analysis of the
magnetic susceptibility, we have found the level splitting energies as 5 K and
130 K. The magnetization measurements reveal that the a-axis is the easy axis
of magnetization and the saturation moment is = 1.6 /Ce, corroborating the previous neutron diffraction measurements on a
polycrystalline sample.Comment: Submitted to Phys. Rev.
- …