15 research outputs found
Measuring the decoherence rate in a semiconductor charge qubit
We describe a method by which the decoherence time of a solid state qubit may
be measured. The qubit is coded in the orbital degree of freedom of a single
electron bound to a pair of donor impurities in a semiconductor host. The qubit
is manipulated by adiabatically varying an external electric field. We show
that, by measuring the total probability of a successful qubit rotation as a
function of the control field parameters, the decoherence rate may be
determined. We estimate various system parameters, including the decoherence
rates due to electromagnetic fluctuations and acoustic phonons. We find that,
for reasonable physical parameters, the experiment is possible with existing
technology. In particular, the use of adiabatic control fields implies that the
experiment can be performed with control electronics with a time resolution of
tens of nanoseconds.Comment: 9 pages, 6 figures, revtex
Calcium Signals Driven by Single Channel Noise
Usually, the occurrence of random cell behavior is appointed to small copy numbers of molecules involved in the stochastic process. Recently, we demonstrated for a variety of cell types that intracellular Ca2+ oscillations are sequences of random spikes despite the involvement of many molecules in spike generation. This randomness arises from the stochastic state transitions of individual Ca2+ release channels and does not average out due to the existence of steep concentration gradients. The system is hierarchical due to the structural levels channel - channel cluster - cell and a corresponding strength of coupling. Concentration gradients introduce microdomains which couple channels of a cluster strongly. But they couple clusters only weakly; too weak to establish deterministic behavior on cell level. Here, we present a multi-scale modelling concept for stochastic hierarchical systems. It simulates active molecules individually as Markov chains and their coupling by deterministic diffusion. Thus, we are able to follow the consequences of random single molecule state changes up to the signal on cell level. To demonstrate the potential of the method, we simulate a variety of experiments. Comparisons of simulated and experimental data of spontaneous oscillations in astrocytes emphasize the role of spatial concentration gradients in Ca2+ signalling. Analysis of extensive simulations indicates that frequency encoding described by the relation between average and standard deviation of interspike intervals is surprisingly robust. This robustness is a property of the random spiking mechanism and not a result of control