164 research outputs found

    Computational assessment of insulin secretion and insulin sensitivity from 2-h oral glucose tolerance tests for clinical use for type 2 diabetes

    Get PDF
    In type 2 diabetes mellitus, glucose homeostasis is tightly maintained through insulin secretion and insulin sensitivity. Therefore, finding an accurate method to assess insulin secretion and sensitivity using clinically available data would enhance the quality of diabetic medical care. In an effort to find such a method, we developed a computational approach to derive indices of these factors using a 2-h oral glucose tolerance test (OGTT). To evaluate our method, clinical data from subjects who received an OGTT and a glucose clamp test were examined. Our insulin secretion index was significantly correlated with an analogous index obtained from a hyperglycemic clamp test (r = 0.90, n = 46, p < 0.001). Our insulin sensitivity index sensitivity was also significantly correlated with an analogous index obtained from a hyperinsulinemic-euglycemic clamp test (r = 0.56, n = 79, p < 0.001). These results suggest that our method can potentially provide an accurate and convenient tool toward improving the management of diabetes in clinical practice by assessing insulin secretion and insulin sensitivity

    l-Tetrahydropalmatine, an Active Component of Corydalis yanhusuo W.T. Wang, Protects against Myocardial Ischaemia-Reperfusion Injury in Rats

    Get PDF
    l-Tetrahydropalmatine (l-THP) is an active ingredients of Corydalis yanhusuo W.T. Wang, which protects against acute global cerebral ischaemia-reperfusion injury. In this study, we show that l-THP is cardioprotective in myocardial ischaemia-reperfusion injury and examined the mechanism. Rats were treated with l-THP (0, 10, 20, 40 mg/kg b.w.) for 20 min before occlusion of the left anterior descending coronary artery and subjected to myocardial ischaemia-reperfusion (30 min/6 h). Compared with vehicle-treated animals, the infarct area/risk area (IA/RA) of l-THP (20, 40 mg/kg b.w.) treated rats was reduced, whilst l-THP (10 mg/kg b.w.) had no significant effect. Cardiac function was improved in l-THP-treated rats whilst plasma creatine kinase activity declined. Following treatment with l-THP (20 mg/kg b.w.), subunit of phosphatidylinositol 3-kinase p85, serine473 phosphorylation of Akt and serine1177 phosphorylation of endothelial NO synthase (eNOS) increased in myocardium, whilst expression of inducible NO synthase (iNOS) decreased. However, the expression of HIF-1α and VEGF were increased in I30 minR6 h, but decreased to normal level in I30 minR24 h, while treatment with l-THP (20 mg/kg b.w.) enhanced the levels of these two genes in I30 minR24 h. Production of NO in myocardium and plasma, activity of myeloperoxidase (MPO) in plasma and the expression of tumour necrosis factor-α (TNF-α) in myocardium were decreased by l-THP. TUNEL assay revealed that l-THP (20 mg/kg b.w.) reduced apoptosis in myocardium. Thus, we show that l-THP activates the PI3K/Akt/eNOS/NO pathway and increases expression of HIF-1α and VEGF, whilst depressing iNOS-derived NO production in myocardium. This effect may decrease the accumulation of inflammatory factors, including TNF-α and MPO, and lessen the extent of apoptosis, therefore contributing to the cardioprotective effects of l-THP in myocardial ischaemia-reperfusion injury

    Applications of lignin in the agri-food industry

    Get PDF
    Of late, valorization of agri-food industrial by-products and their sustainable utilization is gaining much contemplation world-over. Globally, 'Zero Waste Concept' is promoted with main emphasis laid towards generation of minimal wastes and maximal utilization of plantbased agri-food raw materials. One of the wastes/by-products in the agri-food industry are the lignin, which occurs as lignocellulosic biomass. This biomass is deliberated to be an environmental pollutant as they offer resistance to natural biodegradation. Safe disposal of this biomass is often considered a major challenge, especially in low-income countries. Hence, the application of modern technologies to effectively reduce these types of wastes and maximize their potential use/applications is vital in the present day scenario. Nevertheless, in some of the high-income countries, attempts have been made to efficiently utilize lignin as a source of fuel, as a raw material in the paper industry, as a filler material in biopolymer based packaging and for producing bioethanol. However, as of today, agri-food industrial applications remains significantly underexplored. Chemically, lignin is heterogeneous, bio-polymeric, polyphenolic compound, which is present naturally in plants, providing mechanical strength and rigidity. Reports are available wherein purified lignin is established to possess therapeutic values; and are rich in antioxidant, anti-microbial, anti-carcinogenic, antidiabetic properties, etc. This chapter is divided into four sub-categories focusing on various technological aspects related to isolation and characterization of lignin; established uses of lignin; proved bioactivities and therapeutic potentials of lignin, and finally on identifying the existing research gaps followed by future recommendations for potential use from agri-food industrial wastes.Theme of this chapter is based on our ongoing project- Valortech, which has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 810630

    Research on flexible display at ulsan national institute of science and technology

    Get PDF
    Displays represent information visually, so they have become the fundamental building block to visualize the data of current electronics including smartphones. Recently, electronics have been advanced toward flexible and wearable electronics that can be bent, folded, or stretched while maintaining their performance under various deformations. Here, recent advances in research to demonstrate flexible and wearable displays are reviewed. We introduce these results by dividing them into several categories according to the components of the display: active-matrix backplane, touch screen panel, light sources, integrated circuit for fingerprint touch screen panel, and characterization tests; and we also present mechanical tests in nano-meter scale and visual ergonomics research

    The Helicobacter pylori Genome Project : insights into H. pylori population structure from analysis of a worldwide collection of complete genomes

    Get PDF
    Helicobacter pylori, a dominant member of the gastric microbiota, shares co-evolutionary history with humans. This has led to the development of genetically distinct H. pylori subpopulations associated with the geographic origin of the host and with differential gastric disease risk. Here, we provide insights into H. pylori population structure as a part of the Helicobacter pylori Genome Project (HpGP), a multi-disciplinary initiative aimed at elucidating H. pylori pathogenesis and identifying new therapeutic targets. We collected 1011 well-characterized clinical strains from 50 countries and generated high-quality genome sequences. We analysed core genome diversity and population structure of the HpGP dataset and 255 worldwide reference genomes to outline the ancestral contribution to Eurasian, African, and American populations. We found evidence of substantial contribution of population hpNorthAsia and subpopulation hspUral in Northern European H. pylori. The genomes of H. pylori isolated from northern and southern Indigenous Americans differed in that bacteria isolated in northern Indigenous communities were more similar to North Asian H. pylori while the southern had higher relatedness to hpEastAsia. Notably, we also found a highly clonal yet geographically dispersed North American subpopulation, which is negative for the cag pathogenicity island, and present in 7% of sequenced US genomes. We expect the HpGP dataset and the corresponding strains to become a major asset for H. pylori genomics

    Effects of temperature on monotonic and fatigue properties of carbon fibre epoxy cross ply laminates

    No full text
    The effects of test temperature on damage accumulation behaviour has been studied using "Torayca" T800H / #3631 in conditions of monotonic and fatigue loading. The damage accumulation behaviour was found to vary as a function of the test temperature, with the effect of temperature on the damage behaviour being different between monotonic and fatigue loading
    corecore