5,786 research outputs found
Self-Consistent Tensor Product Variational Approximation for 3D Classical Models
We propose a numerical variational method for three-dimensional (3D)
classical lattice models. We construct the variational state as a product of
local tensors, and improve it by use of the corner transfer matrix
renormalization group (CTMRG), which is a variant of the density matrix
renormalization group (DMRG) applied to 2D classical systems. Numerical
efficiency of this approximation is investigated through trial applications to
the 3D Ising model and the 3D 3-state Potts model.Comment: 12 pages, 6 figure
Photoinduced charge and spin dynamics in strongly correlated electron systems
Motivated by photoinduced phase transition in manganese oxides, charge and
spin dynamics induced by photoirradiation are examined. We calculate the
transient optical absorption spectra of the extended double-exchange model by
the density matrix renormalization group (DMRG) method. A charge-ordered
insulating (COI) state becomes metallic just after photoirradiation, and the
system tends to recover the initial COI state. The recovery is accompanied with
remarkable suppression of an antiferromagnetic correlation in the COI state.
The DMRG results are consistent with recent pump-probe spectroscopy data.Comment: 5 pages, 4 figure
Magnetic phase diagram of the S=1/2 antiferromagnetic zigzag spin chain in the strongly frustrated region: cusp and plateau
We determine the magnetic phase diagram of the antiferromagnetic(AF) zigzag
spin chain in the strongly frustrated region, using the density matrix
renormalization group method. We find the magnetization plateau at 1/3 of the
full moment accompanying the spontaneous symmetry breaking of the translation,
the cusp singularities above and/or below the plateau, and the even-odd effect
in the magnetization curve. We also discuss the formation mechanisms of the
plateau and cusps briefly.Comment: 4 pages, 8 figures, revised version, to appear in J.Phys.Soc.Jp
A novel fragment derived from the β chain of human fibrinogen, β43–63, is a potent inhibitor of activated endothelial cells in vitro and in vivo
Background: Angiogenesis and haemostasis are closely linked within tumours with many haemostatic proteins regulating tumour angiogenesis. Indeed we previously identified a fragment of human fibrinogen, fibrinogen E-fragment (FgnE) with potent anti-angiogenic properties in vitro and cytotoxic effects on tumour vessels in vivo. We therefore investigated which region of FgnE was mediating vessel cytotoxicity.
Methods: Human dermal microvascular endothelial cells (ECs) were used to test the efficacy of peptides derived from FgnE on proliferation, migration, differentiation, apoptosis and adhesion before testing the efficacy of an active peptide on tumour vasculature in vivo.
Results: We identified a 20-amino-acid peptide derived from the β chain of FgnE, β43–63, which had no effect on EC proliferation or migration but markedly inhibited the ability of activated ECs to form tubules or to adhere to various constituents of the extracellular matrix – collagen IV, fibronectin and vitronectin. Furthermore, our data show that β43–63 interacts with ECs, in part, by binding to αvβ3, so soluble αvβ3 abrogated β43–63 inhibition of tubule formation by activated ECs. Finally, when injected into mice bearing tumour xenografts, β43–63 inhibited tumour vascularisation and induced formation of significant tumour necrosis.
Conclusions: Taken together, these data suggest that β43–63 is a novel anti-tumour peptide whose anti-angiogenic effects are mediated by αvβ3
Nestin expression in the kidney with an obstructed ureter
Nestin is an intermediate filament protein originally identified in neuroepithelial stem cells. This cytoskeletal-associated protein is also expressed in some non-neuronal organs including renal tubular cells and glomerular endothelial cells during kidney development. Little is known, however, about nestin expression in the kidney during injury. In this study, we find nestin expression induced in renal tubular and interstitial myofibroblasts in the adult rat kidney following unilateral ureteral obstruction. The degree of nestin expression was well correlated with the degree of tubulointerstitial fibrosis. Immunohistochemical identification of specific nephron segments showed that nestin was primarily expressed by proximal tubules, partially by distal tubules and thick ascending limbs of Henle but not by collecting ducts. The nestin-positive tubular cells also expressed vimentin and heat-shock protein 47 (HSP47) suggesting these cells reverted to a mesenchymal phenotype. Not all vimentin- or HSP-expressing cells expressed nestin; however, suggesting that nestin is distinct from these conventional mesenchymal markers. Nestin expression was also found associated with phenotypical changes in cultured renal cells induced by hypoxia or transforming growth factor-β. Nestin expression was located in hypoxic regions of the kidney with an obstructed ureter. Our results indicate that nestin could be a novel marker for tubulointerstitial injury
Fractional S^z excitation and its bound state around the 1/3 plateau of the S=1/2 Ising-like zigzag XXZ chain
We present the microscopic view for the excitations around the 1/3 plateau
state of the Ising-like zigzag XXZ chain. We analyze the low-energy excitations
around the plateau with the degenerating perturbation theory from the Ising
limit, combined with the Bethe-form wave function. We then find that the
domain-wall particles carrying and its bound state of describe well the low-energy excitations around the 1/3 plateau state. The
formation of the bound state of the domain-walls clearly provides the
microscopic mechanism of the cusp singularities and the even-odd behavior in
the magnetization curve.Comment: 13 pages, 15 figure
Charge-Transfer Excitations in One-Dimensional Dimerized Mott Insulators
We investigate the optical properties of one-dimensional (1D) dimerized Mott
insulators using the 1D dimerized extended Hubbard model. Numerical
calculations and a perturbative analysis from the decoupled-dimer limit clarify
that there are three relevant classes of charge-transfer (CT) states generated
by photoexcitation: interdimer CT unbound states, interdimer CT exciton states,
and intradimer CT exciton states. This classification is applied to
understanding the optical properties of an organic molecular material,
1,3,5-trithia-2,4,6-triazapentalenyl (TTTA), which is known for its
photoinduced transition from the dimerized spin-singlet phase to the regular
paramagnetic phase. We conclude that the lowest photoexcited state of TTTA is
the interdimer CT exciton state and the second lowest state is the intradimer
CT exciton state.Comment: 6 pages, 6 figures, to be published in J. Phys. Soc. Jp
Symmetry adapted finite-cluster solver for quantum Heisenberg model in two-dimensions: a real-space renormalization approach
We present a quantum cluster solver for spin- Heisenberg model on a
two-dimensional lattice. The formalism is based on the real-space
renormalization procedure and uses the lattice point group-theoretical analysis
and nonabelian SU(2) spin symmetry technique. The exact diagonalization
procedure is used twice at each renormalization group step. The method is
applied to the spin-half antiferromagnet on a square lattice and a calculation
of local observables is demonstrated. A symmetry based truncation procedure is
suggested and verified numerically.Comment: willm appear in J. Phys.
- …