140 research outputs found

    Elucidating the Role of the Complement Control Protein in Monkeypox Pathogenicity

    Get PDF
    Monkeypox virus (MPXV) causes a smallpox-like disease in humans. Clinical and epidemiological studies provide evidence of pathogenicity differences between two geographically distinct monkeypox virus clades: the West African and Congo Basin. Genomic analysis of strains from both clades identified a ∼10 kbp deletion in the less virulent West African isolates sequenced to date. One absent open reading frame encodes the monkeypox virus homologue of the complement control protein (CCP). This modulatory protein prevents the initiation of both the classical and alternative pathways of complement activation. In monkeypox virus, CCP, also known as MOPICE, is a ∼24 kDa secretory protein with sequence homology to this superfamily of proteins. Here we investigate CCP expression and its role in monkeypox virulence and pathogenesis. CCP was incorporated into the West African strain and removed from the Congo Basin strain by homologous recombination. CCP expression phenotypes were confirmed for both wild type and recombinant monkeypox viruses and CCP activity was confirmed using a C4b binding assay. To characterize the disease, prairie dogs were intranasally infected and disease progression was monitored for 30 days. Removal of CCP from the Congo Basin strain reduced monkeypox disease morbidity and mortality, but did not significantly decrease viral load. The inclusion of CCP in the West African strain produced changes in disease manifestation, but had no apparent effect on disease-associated mortality. This study identifies CCP as an important immuno-modulatory protein in monkeypox pathogenesis but not solely responsible for the increased virulence seen within the Congo Basin clade of monkeypox virus

    Human Peripheral Blood Mononuclear Cells Exhibit Heterogeneous CD52 Expression Levels and Show Differential Sensitivity to Alemtuzumab Mediated Cytolysis

    Get PDF
    Alemtuzumab is a monoclonal antibody that targets cell surface CD52 and is effective in depleting lymphocytes by cytolytic effects in vivo. Although the cytolytic effects of alemtuzumab are dependent on the density of CD52 antigen on cells, there is scant information regarding the expression levels of CD52 on different cell types. In this study, CD52 expression was assessed on phenotypically distinct subsets of lymphoid and myeloid cells in peripheral blood mononuclear cells (PBMCs) from normal donors. Results demonstrate that subsets of PBMCs express differing levels of CD52. Quantitative analysis showed that memory B cells and myeloid dendritic cells (mDCs) display the highest number while natural killer (NK) cells, plasmacytoid dendritic cells (pDCs) and basophils have the lowest number of CD52 molecules per cell amongst lymphoid and myeloid cell populations respectively. Results of complement dependent cytolysis (CDC) studies indicated that alemtuzumab mediated profound cytolytic effects on B and T cells with minimal effect on NK cells, basophils and pDCs, correlating with the density of CD52 on these cells. Interestingly, despite high CD52 levels, mDCs and monocytes were less susceptible to alemtuzumab-mediated CDC indicating that antigen density alone does not define susceptibility. Additional studies indicated that higher expression levels of complement inhibitory proteins (CIPs) on these cells partially contributes to their resistance to alemtuzumab mediated CDC. These results indicate that alemtuzumab is most effective in depleting cells of the adaptive immune system while leaving innate immune cells relatively intact

    Interferon-Alpha Mediates Restriction of Human Immunodeficiency Virus Type-1 Replication in Primary Human Macrophages at an Early Stage of Replication

    Get PDF
    Type I interferons (IFNΞ± and Ξ²) are induced directly in response to viral infection, resulting in an antiviral state for the cell. In vitro studies have shown that IFNΞ± is a potent inhibitor of viral replication; however, its role in HIV-1 infection is incompletely understood. In this study we describe the ability of IFNΞ± to restrict HIV-1 infection in primary human macrophages in contrast to peripheral blood mononuclear cells and monocyte-derived dendritic cells. Inhibition to HIV-1 replication in cells pretreated with IFNΞ± occurred at an early stage in the virus life cycle. Late viral events such as budding and subsequent rounds of infection were not affected by IFNΞ± treatment. Analysis of early and late HIV-1 reverse transcripts and integrated proviral DNA confirmed an early post entry role for IFNΞ±. First strand cDNA synthesis was slightly reduced but late and integrated products were severely depleted, suggesting that initiation or the nucleic acid intermediates of reverse transcription are targeted. The depletion of integrated provirus is disproportionally greater than that of viral cDNA synthesis suggesting the possibility of a least an additional later target. A role for either cellular protein APOBEC3G or tetherin in this IFNΞ± mediated restriction has been excluded. Vpu, previously shown by others to rescue a viral budding restriction by tetherin, could not overcome this IFNΞ± induced effect. Determining both the viral determinants and cellular proteins involved may lead to novel therapeutic approaches. Our results add to the understanding of HIV-1 restriction by IFNΞ±

    Hyperfunctional complement C3 promotes C5-dependent atypical hemolytic uremic syndrome in mice

    Get PDF
    Atypical hemolytic uremic syndrome (aHUS) is frequently associated in humans with loss-of-function mutations in complement-regulating proteins or gain-of-function mutations in complement-activating proteins. Thus, aHUS provides an archetypal complement-mediated disease with which to model new therapeutic strategies and treatments. Herein, we show that, when transferred to mice, an aHUS-associated gain-of-function change (D1115N) to the complement-activation protein C3 results in aHUS. Homozygous C3 p.D1115N (C3KI) mice developed spontaneous chronic thrombotic microangiopathy together with hematuria, thrombocytopenia, elevated creatinine, and evidence of hemolysis. Mice with active disease had reduced plasma C3 with C3 fragment and C9 deposition within the kidney. Therapeutic blockade or genetic deletion of C5, a protein downstream of C3 in the complement cascade, protected homozygous C3KI mice from thrombotic microangiopathy and aHUS. Thus, our data provide in vivo modeling evidence that gain-of-function changes in complement C3 drive aHUS. They also show that long-term C5 deficiency is not accompanied by development of other renal complications (such as C3 glomerulopathy) despite sustained dysregulation of C3. Our results suggest that this preclinical model will allow testing of novel complement inhibitors with the aim of developing precisely targeted therapeutics that could have application in many complement-mediated diseases

    Magnetic resonance imaging in children: common problems and possible solutions for lung and airways imaging

    Get PDF
    Pediatric chest MRI is challenging. High-resolution scans of the lungs and airways are compromised by long imaging times, low lung proton density and motion. Low signal is a problem of normal lung. Lung abnormalities commonly cause increased signal intenstities. Among the most important factors for a successful MRI is patient cooperation, so the long acquisition times make patient preparation crucial. Children usually have problems with long breath-holds and with the concept of quiet breathing. Young children are even more challenging because of higher cardiac and respiratory rates giving motion blurring. For these reasons, CT has often been preferred over MRI for chest pediatric imaging. Despite its drawbacks, MRI also has advantages over CT, which justifies its further development and clinical use. The most important advantage is the absence of ionizing radiation, which allows frequent scanning for short- and long-term follow-up studie

    Surviving Mousepox Infection Requires the Complement System

    Get PDF
    Poxviruses subvert the host immune response by producing immunomodulatory proteins, including a complement regulatory protein. Ectromelia virus provides a mouse model for smallpox where the virus and the host's immune response have co-evolved. Using this model, our study investigated the role of the complement system during a poxvirus infection. By multiple inoculation routes, ectromelia virus caused increased mortality by 7 to 10 days post-infection in C57BL/6 mice that lack C3, the central component of the complement cascade. In C3βˆ’/βˆ’ mice, ectromelia virus disseminated earlier to target organs and generated higher peak titers compared to the congenic controls. Also, increased hepatic inflammation and necrosis correlated with these higher tissue titers and likely contributed to the morbidity in the C3βˆ’/βˆ’ mice. In vitro, the complement system in naΓ―ve C57BL/6 mouse sera neutralized ectromelia virus, primarily through the recognition of the virion by natural antibody and activation of the classical and alternative pathways. Sera deficient in classical or alternative pathway components or antibody had reduced ability to neutralize viral particles, which likely contributed to increased viral dissemination and disease severity in vivo. The increased mortality of C4βˆ’/βˆ’ or Factor Bβˆ’/βˆ’ mice also indicates that these two pathways of complement activation are required for survival. In summary, the complement system acts in the first few minutes, hours, and days to control this poxviral infection until the adaptive immune response can react, and loss of this system results in lethal infection

    The role of complement in ocular pathology

    Get PDF
    Functionally active complement system and complement regulatory proteins are present in the normal human and rodent eye. Complement activation and its regulation by ocular complement regulatory proteins contribute to the pathology of various ocular diseases including keratitis, uveitis and age-related macular degeneration. Furthermore, a strong relationship between age-related macular degeneration and polymorphism in the genes of certain complement components/complement regulatory proteins is now well established. Recombinant forms of the naturally occurring complement regulatory proteins have been exploited in the animal models for treatment of these ocular diseases. It is hoped that in the future recombinant complement regulatory proteins will be used as novel therapeutic agents in the clinic for the treatment of keratitis, uveitis, and age-related macular degeneration

    Analysis of C3 Suggests Three Periods of Positive Selection Events and Different Evolutionary Patterns between Fish and Mammals

    Get PDF
    BACKGROUND: The third complement component (C3) is a central protein of the complement system conserved from fish to mammals. It also showed distinct characteristics in different animal groups. Striking features of the fish complement system were unveiled, including prominent levels of extrahepatic expression and isotypic diversity of the complement components. The evidences of the involvement of complement system in the enhancement of B and T cell responses found in mammals indicated that the complement system also serves as a bridge between the innate and adaptive responses. For the reasons mentioned above, it is interesting to explore the evolutionary process of C3 genes and to investigate whether the huge differences between aquatic and terrestrial environments affected the C3 evolution between fish and mammals. METHODOLOGY/PRINCIPAL FINDINGS: Analysis revealed that these two groups of animals had experienced different evolution patterns. The mammalian C3 genes were under purifying selection pressure while the positive selection pressure was detected in fish C3 genes. Three periods of positive selection events of C3 genes were also detected. Two happened on the ancestral lineages to all vertebrates and mammals, respectively, one happened on early period of fish evolutionary history. CONCLUSIONS/SIGNIFICANCE: Three periods of positive selection events had happened on C3 genes during history and the fish and mammals C3 genes experience different evolutionary patterns for their distinct living environments

    Complement is activated in progressive multiple sclerosis cortical grey matter lesions

    Get PDF
    The symptoms of multiple sclerosis (MS) are caused by damage to myelin and nerve cells in the brain and spinal cord. Inflammation is tightly linked with neurodegeneration, and it is the accumulation of neurodegeneration that underlies increasing neurological disability in progressive MS. Determining pathological mechanisms at play in MS grey matter is therefore a key to our understanding of disease progression
    • …
    corecore