5,182 research outputs found

    Tests for Establishing Security Properties

    Get PDF
    Ensuring strong security properties in some cases requires participants to carry out tests during the execution of a protocol. A classical example is electronic voting: participants are required to verify the presence of their ballots on a bulletin board, and to verify the computation of the election outcome. The notion of certificate transparency is another example, in which participants in the protocol are required to perform tests to verify the integrity of a certificate log. We present a framework for modelling systems with such `testable properties', using the applied pi calculus. We model the tests that are made by participants in order to obtain the security properties. Underlying our work is an attacker model called ``malicious but cautious'', which lies in between the Dolev-Yao model and the ``honest but curious'' model. The malicious-but-cautious model is appropriate for cloud computing providers that are potentially malicious but are assumed to be cautious about launching attacks that might cause user tests to fail

    Proline Isomerization Regulates the Phase Behavior of Elastin-Like Polypeptides in Water

    Get PDF
    [Image: see text] Responsiveness of polypeptides and polymers in aqueous solution plays an important role in biomedical applications and in designing advanced functional materials. Elastin-like polypeptides (ELPs) are a well-known class of synthetic intrinsically disordered proteins (IDPs), which exhibit a lower critical solution temperature (LCST) in pure water and in aqueous solutions. Here, we compare the influence of cis/trans proline isomerization on the phase behavior of single ELPs in pure water. Our results reveal that proline isomerization tunes the conformational behavior of ELPs while keeping the transition temperature unchanged. We find that the presence of the cis isomers facilitates compact structures by preventing peptide–water hydrogen bonding while promoting intramolecular interactions. In other words, the LCST transition of ELPs with all proline residues in the cis state occurs with almost no noticeable conformational change

    Exciton doublet in the Mott-Hubbard LiCuVO4_4 insulator identified by spectral ellipsometry

    Full text link
    Spectroscopic ellipsometry was used to study the dielectric function of LiCuVO4_{4}, a compound comprised of chains of edge-sharing CuO4_4 plaquettes, in the spectral range (0.75 - 6.5) eV at temperatures (7-300) K. For photon polarization along the chains, the data reveal a weak but well-resolved two-peak structure centered at 2.15 and 2.95 eV whose spectral weight is strongly enhanced upon cooling near the magnetic ordering temperature. We identify these features as an exciton doublet in the Mott-Hubbard gap that emerges as a consequence of the Coulomb interaction between electrons on nearest and next-nearest neighbor sites along the chains. Our results and methodology can be used to address the role of the long-range Coulomb repulsion for compounds with doped copper-oxide chains and planes.Comment: 4 pages with 4 figures and EPAPS supplementary online material (3 pages with 4 figures), accepted in Phys. Rev. Let

    Irreversible Processes in a Universe modelled as a mixture of a Chaplygin gas and radiation

    Full text link
    The evolution of a Universe modelled as a mixture of a Chaplygin gas and radiation is determined by taking into account irreversible processes. This mixture could interpolate periods of a radiation dominated, a matter dominated and a cosmological constant dominated Universe. The results of a Universe modelled by this mixture are compared with the results of a mixture whose constituents are radiation and quintessence. Among other results it is shown that: (a) for both models there exists a period of a past deceleration with a present acceleration; (b) the slope of the acceleration of the Universe modelled as a mixture of a Chaplygin gas with radiation is more pronounced than that modelled as a mixture of quintessence and radiation; (c) the energy density of the Chaplygin gas tends to a constant value at earlier times than the energy density of quintessence does; (d) the energy density of radiation for both mixtures coincide and decay more rapidly than the energy densities of the Chaplygin gas and of quintessence.Comment: 8 pages, 1 figure, to be published in GR

    Rheology of Ring Polymer Melts: From Linear Contaminants to Ring/Linear Blends

    Full text link
    Ring polymers remain a major challenge to our current understanding of polymer dynamics. Experimental results are difficult to interpret because of the uncertainty in the purity and dispersity of the sample. Using both equilibrium and non-equilibrium molecular dynamics simulations we have systematically investigated the structure, dynamics and rheology of perfectly controlled ring/linear polymer blends with chains of such length and flexibility that the number of entanglements is up to about 14 per chain, which is comparable to experimental systems examined in the literature. The smallest concentration at which linear contaminants increase the zero-shear viscosity of a ring polymer melt of these chain lengths by 10% is approximately one-fifth of their overlap concentration. When the two architectures are present in equal amounts the viscosity of the blend is approximately twice as large as that of the pure linear melt. At this concentration the diffusion coefficient of the rings is found to decrease dramatically, while the static and dynamic properties of the linear polymers are mostly unaffected. Our results are supported by a primitive path analysis.Comment: 5 pages, 4 figures, accepted by PR

    Signatures of Electronic Correlations in Optical Properties of LaFeAsO1x_{1-x}Fx_x

    Full text link
    Spectroscopic ellipsometry is used to determine the dielectric function of the superconducting LaFeAsO0.9_{0.9}F0.1_{0.1} (TcT_c = 27 K) and undoped LaFeAsO polycrystalline samples in the wide range 0.01-6.5 eV at temperatures 10 T\leq T \leq 350 K. The free charge carrier response in both samples is heavily damped with the effective carrier density as low as 0.040±\pm0.005 electrons per unit cell. The spectral weight transfer in the undoped LaFeAsO associated with opening of the pseudogap at about 0.65 eV is restricted at energies below 2 eV. The spectra of superconducting LaFeAsO0.9_{0.9}F0.1_{0.1} reveal a significant transfer of the spectral weight to a broad optical band above 4 eV with increasing temperature. Our data may imply that the electronic states near the Fermi surface are strongly renormalized due to electron-phonon and/or electron-electron interactions.Comment: 4 pages, 4 figures, units in Fig.2 adde

    Collapse of Randomly Self-Interacting Polymers

    Full text link
    We use complete enumeration and Monte Carlo techniques to study self--avoiding walks with random nearest--neighbor interactions described by v0qiqjv_0q_iq_j, where qi=±1q_i=\pm1 is a quenched sequence of ``charges'' on the chain. For equal numbers of positive and negative charges (N+=NN_+=N_-), the polymer with v0>0v_0>0 undergoes a transition from self--avoiding behavior to a compact state at a temperature θ1.2v0\theta\approx1.2v_0. The collapse temperature θ(x)\theta(x) decreases with the asymmetry x=N+N/(N++N)x=|N_+-N_-|/(N_++N_-)Comment: 8 pages, TeX, 4 uuencoded postscript figures, MIT-CMT-

    On two intrinsic length scales in polymer physics: topological constraints vs. entanglement length

    Full text link
    The interplay of topological constraints, excluded volume interactions, persistence length and dynamical entanglement length in solutions and melts of linear chains and ring polymers is investigated by means of kinetic Monte Carlo simulations of a three dimensional lattice model. In unknotted and unconcatenated rings, topological constraints manifest themselves in the static properties above a typical length scale dt1/lϕdt \sim 1/\sqrt{l\phi} (ϕ\phi being the volume fraction, ll the mean bond length). Although one might expect that the same topological length will play a role in the dynamics of entangled polymers, we show that this is not the case. Instead, a different intrinsic length de, which scales like excluded volume blob size ξ\xi, governs the scaling of the dynamical properties of both linear chains and rings.Comment: 7 pages. 4 figure
    corecore