89 research outputs found

    The Nutritional Induction of COUP-TFII Gene Expression in Ventromedial Hypothalamic Neurons Is Mediated by the Melanocortin Pathway

    Get PDF
    BACKGROUND: The nuclear receptor chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) is an important coordinator of glucose homeostasis. We report, for the first time, a unique differential regulation of its expression by the nutritional status in the mouse hypothalamus compared to peripheral tissues. METHODOLOGY/PRINCIPAL FINDINGS: Using hyperinsulinemic-euglycemic clamps and insulinopenic mice, we show that insulin upregulates its expression in the hypothalamus. Immunofluorescence studies demonstrate that COUP-TFII gene expression is restricted to a subpopulation of ventromedial hypothalamic neurons expressing the melanocortin receptor. In GT1-7 hypothalamic cells, the MC4-R agonist MTII leads to a dose dependant increase of COUP-TFII gene expression secondarily to a local increase in cAMP concentrations. Transfection experiments, using a COUP-TFII promoter containing a functional cAMP responsive element, suggest a direct transcriptional activation by cAMP. Finally, we show that the fed state or intracerebroventricular injections of MTII in mice induce an increased hypothalamic COUP-TFII expression associated with a decreased hepatic and pancreatic COUP-TFII expression. CONCLUSIONS/SIGNIFICANCE: These observations strongly suggest that hypothalamic COUP-TFII gene expression could be a central integrator of insulin and melanocortin signaling pathway within the ventromedial hypothalamus. COUP-TFII could play a crucial role in brain integration of circulating signal of hunger and satiety involved in energy balance regulation

    Beyond the particular and universal:dependence, independence, and interdependence of context, justice, and ethics

    Get PDF
    This article reflects on context effects in the study of behavioral ethics and organizational justice. After a general overview, we review three key challenges confronting research in these two domains. First, we consider social scientific versus normative approaches to inquiry. The former aims for a scientific description, while the latter aims to provide prescriptive advice for moral conduct. We argue that the social scientific view can be enriched by considering normative paradigms. The next challenge we consider, involves the duality of morally upright versus morally inappropriate behavior. We observe that there is a long tradition of categorizing behavior dichotomously (e.g., good vs. bad) rather than continuously. We conclude by observing that more research is needed to compare the dichotomous versus continuous perspectives. Third, we examine the role of “cold” cognitions and “hot” affect in making judgments of ethicality. Historically speaking, research has empathized cognition, though recent work has begun to add greater balance to affective reactions. We argue that both cognition and affect are important, but more research is needed to determine how they work together. After considering these three challenges, we then turn to our special issue, providing short reviews of each contribution and how they help in better addressing the three challenges we have identified

    Clock genes and their genomic distributions in three species of salmonid fishes: Associations with genes regulating sexual maturation and cell cycling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clock family genes encode transcription factors that regulate clock-controlled genes and thus regulate many physiological mechanisms/processes in a circadian fashion. Clock1 duplicates and copies of Clock3 and NPAS2-like genes were partially characterized (genomic sequencing) and mapped using family-based indels/SNPs in rainbow trout (RT)(<it>Oncorhynchus mykiss</it>), Arctic charr (AC)(<it>Salvelinus alpinus</it>), and Atlantic salmon (AS)(<it>Salmo salar</it>) mapping panels.</p> <p>Results</p> <p>Clock1 duplicates mapped to linkage groups RT-8/-24, AC-16/-13 and AS-2/-18. Clock3/NPAS2-like genes mapped to RT-9/-20, AC-20/-43, and AS-5. Most of these linkage group regions containing the Clock gene duplicates were derived from the most recent 4R whole genome duplication event specific to the salmonids. These linkage groups contain quantitative trait loci (QTL) for life history and growth traits (i.e., reproduction and cell cycling). Comparative synteny analyses with other model teleost species reveal a high degree of conservation for genes in these chromosomal regions suggesting that functionally related or co-regulated genes are clustered in syntenic blocks. For example, anti-müllerian hormone (amh), regulating sexual maturation, and ornithine decarboxylase antizymes (oaz1 and oaz2), regulating cell cycling, are contained within these syntenic blocks.</p> <p>Conclusions</p> <p>Synteny analyses indicate that regions homologous to major life-history QTL regions in salmonids contain many candidate genes that are likely to influence reproduction and cell cycling. The order of these genes is highly conserved across the vertebrate species examined, and as such, these genes may make up a functional cluster of genes that are likely co-regulated. CLOCK, as a transcription factor, is found within this block and therefore has the potential to cis-regulate the processes influenced by these genes. Additionally, clock-controlled genes (CCGs) are located in other life-history QTL regions within salmonids suggesting that at least in part, trans-regulation of these QTL regions may also occur via Clock expression.</p

    Mapping and Imaging the Aggressive Brain in Animals and Humans

    Get PDF

    Neural networks as spatio-temporal pattern-forming systems

    Full text link

    Dissociation of the morphological correlates of stress-induced anxiety and fear

    No full text
    Chronic stress is a powerful modulator of emotional behaviour. Previous studies have shown that distinct neuronal pathways modulate different emotional behaviours: while the amygdala plays a key role in fear-conditioned-to-cue stimuli, the bed nucleus of stria terminalis (BNST) is implicated in anxiety behaviour and responses to contextual stimuli. In addition, the BNST is directly involved in the regulation of the hypothalamus-pituitary-adrenal (HPA) axis. In the present study, we assessed anxiety (measured in the elevated-plus maze and acoustic startle apparatus) and fear-conditioned responses to light stimuli in rats that had been exposed to either chronic unpredictable stress or corticosterone for 28 days; thereafter, stereological estimates of the BNST and amygdaloid complex were performed, followed by three-dimensional morphometric dendritic analysis. Results show that chronic stress induces hyperanxiety without influencing fear conditioning or locomotion and exploratory activity. Stress-induced hyperanxiety was correlated with increased volumes of the BNST but not of the amygdala. Dendritic remodelling was found to make a significant contribution to the stress-induced increase in BNST volume, primarily due to changes in the anteromedial area of the BNST, an area strongly implicated in emotional behaviour and in the neuroendocrine control of the stress response. Importantly, all of the effects of stress were recapitulated by exogenous corticosterone. In conclusion, this study shows that chronic stress impacts on BNST structure and function; its findings pertain to the modulation of emotional behaviour and the maladaptive response to stress
    corecore