30,333 research outputs found
An efficient hybrid model and dynamic performance analysis for multihop wireless networks
Multihop wireless networks can be subjected to nonstationary phenomena due to a dynamic network topology and time varying traffic. However, the simulation techniques used to study multihop wireless networks focus on the steady-state performance even though transient or nonstationary periods will often occur. Moreover, the majority of the simulators suffer from poor scalability. In this paper, we develop an efficient performance modeling technique for analyzing the time varying queueing behavior of multihop wireless networks. The one-hop packet transmission (service) time is assumed to be deterministic, which could be achieved by contention-free transmission, or approximated in sparse or lightly loaded multihop wireless networks. Our model is a hybrid of time varying adjacency matrix and fluid flow based differential equations, which represent dynamic topology changes and nonstationary network queues, respectively. Numerical experiments show that the hybrid fluid based model can provide reasonably accurate results much more efficiently than standard simulators. Also an example application of the modeling technique is given showing the nonstationary network performance as a function of node mobility, traffic load and wireless link quality. © 2013 IEEE
Performance of Cross-layer Design with Multiple Outdated Estimates in Multiuser MIMO System
By combining adaptive modulation (AM) and automatic repeat request (ARQ) protocol as well as user scheduling, the cross-layer design scheme of multiuser MIMO system with imperfect feedback is presented, and multiple outdated estimates method is proposed to improve the system performance. Based on this method and imperfect feedback information, the closed-form expressions of spectral efficiency (SE) and packet error rate (PER) of the system subject to the target PER constraint are respectively derived. With these expressions, the system performance can be effectively evaluated. To mitigate the effect of delayed feedback, the variable thresholds (VTs) are also derived by means of the maximum a posteriori method, and these VTs include the conventional fixed thresholds (FTs) as special cases. Simulation results show that the theoretical SE and PER are in good agreement with the corresponding simulation. The proposed CLD scheme with multiple estimates can obtain higher SE than the existing CLD scheme with single estimate, especially for large delay. Moreover, the CLD scheme with VTs outperforms that with conventional FTs
A time dependent performance model for multihop wireless networks with CBR traffic
In this paper, we develop a performance modeling technique for analyzing the time varying network layer queueing behavior of multihop wireless networks with constant bit rate traffic. Our approach is a hybrid of fluid flow queueing modeling and a time varying connectivity matrix. Network queues are modeled using fluid-flow based differential equation models which are solved using numerical methods, while node mobility is modeled using deterministic or stochastic modeling of adjacency matrix elements. Numerical and simulation experiments show that the new approach can provide reasonably accurate results with significant improvements in the computation time compared to standard simulation tools. © 2010 IEEE
Neutrino-induced nucleosynthesis and the site of the r process
If the r process occurs deep within a type II supernova, probably the most popular of the proposed sites, abundances of r-process elements may be altered by the intense neutrino flux. We point out that the effects would be especially pronounced for eight isotopes that can be efficiently synthesized by the neutrino reactions following r-process freeze-out. We show that the observed abundances of these isotopes are entirely consistent with neutrino-induced nucleosynthesis, strongly arguing for a supernova r-process site. The deduced neutrino fluences place stringent constraints on the freeze-out radius and dynamic time scale of the r process
Space-charge effects of the proposed high-intensity Fermilab booster
Space-charge effects on beam stabilities are studied for the proposed two-ring high-intensity Fermilab booster destined for the muon collider. This includes microwave instabilities and rf potential-well distortions. For the first ring, ferrite insertion is suggested to cancel the space-charge distortion of the rf wave form. To control the inductance of the ferrite during ramping and to minimize resistive loss, perpendicular biasing to saturation is proposed
Galilean invariance of lattice Boltzmann models
It is well-known that the original lattice Boltzmann (LB) equation deviates
from the Navier-Stokes equations due to an unphysical velocity dependent
viscosity. This unphysical dependency violates the Galilean invariance and
limits the validation domain of the LB method to near incompressible flows. As
previously shown, recovery of correct transport phenomena in kinetic equations
depends on the higher hydrodynamic moments. In this Letter, we give specific
criteria for recovery of various transport coefficients. The Galilean
invariance of a general class of LB models is demonstrated via numerical
experiments
Recommended from our members
Dynamic Behavior of Precast Concrete Beam-Column Sub-Assemblages with High Performance Connections Subjected to Sudden Column Removal Scenario
Unbonded posttensioned precast concrete (UPPC) structure has shown its excellent aseismic performance in laboratory tests and earthquake investigation. However, the progressive collapse behavior of UPPC subjected to column removal scenario is still unclear. To fill this knowledge gap, two 1/2 scaled UPPC beam-column sub-assemblages were tested under a penultimate column removal scenario. The dynamic test results indicated that UPPC sub-assemblages have desirable load redistribution capacity to mitigate progressive collapse. The failure modes of the sub-assemblages observed in dynamic test were quite similar to that in static counterparts
Extended skyrmion lattice scattering and long-time memory in the chiral magnet FeCoSi
Small angle neutron scattering measurements on a bulk single crystal of the
doped chiral magnet FeCoSi with =0.3 reveal a pronounced effect
of the magnetic history and cooling rates on the magnetic phase diagram. The
extracted phase diagrams are qualitatively different for zero and field cooling
and reveal a metastable skyrmion lattice phase outside the A-phase for the
latter case. These thermodynamically metastable skyrmion lattice correlations
coexist with the conical phase and can be enhanced by increasing the cooling
rate. They appear in a wide region of the phase diagram at temperatures below
the -phase but also at fields considerably smaller or higher than the fields
required to stabilize the A-phase
- âŠ