11 research outputs found

    Nuclear medium modifications of the NN interaction via quasielastic (p,p\vec p,\vec p ') and (p,n\vec{p},\vec{n}) scattering

    Full text link
    Within the relativistic PWIA, spin observables have been recalculated for quasielastic (p,p\vec p,\vec p ') and (p,n\vec p,\vec n) reactions on a 40^{40}Ca target. The incident proton energy ranges from 135 to 300 MeV while the transferred momentum is kept fixed at 1.97 fm^{-1}. In the present calculations, new Horowitz-Love--Franey relativistic NN amplitudes have been generated in order to yield improved and more quantitative spin observable values than before. The sensitivities of the various spin observables to the NN interaction parameters, such as (1) the presence of the surrounding nuclear medium, (2) a pseudoscalar versus a pseudovector interaction term, and (3) exchange effects, point to spin observables which should preferably be measured at certain laboratory proton energies, in order to test current nuclear models. This study also shows that nuclear medium effects become more important at lower proton energies (\leq 200 MeV). A comparison to the limited available data indicates that the relativistic parametrization of the NN scattering amplitudes in terms of only the five Fermi invariants (the SVPAT form) is questionable.Comment: 10 pages, 6 Postscript figures, uses psfig.sty and article.sty, submitted to Phys. Rev.

    Relativistic predictions of spin observables for exclusive proton knockout reactions

    Full text link
    Within the framework of the relativistic distorted wave impulse approximation (DWIA), we investigate the sensitivity of complete sets of polarization transfer observables for exclusive proton knockout from the 3s1/2_{1/2}, 2d3/2_{3/2} and 2d5/2_{5/2} states in 208^{208}Pb, at an incident laboratory kinetic energy of 202 MeV, and for coincident coplanar scattering angles (28.028.0^{\circ}, 54.6-54.6^{\circ}), to different distorting optical potentials, finite-range (FR) versus zero-range (ZR) approximations to the DWIA, as well as medium-modified meson-nucleon coupling constants and meson masses. Results are also compared to the nonrelativistic DWIA predictions based on the Schr\"{o}dinger equation.Comment: Submitted for publication to Physicical Review C, 23 pages, 7 figure

    Relativistic predictions of exclusive 208Pb(p,2p)207T^{208}Pb(\vec{p},2p) ^{207}T\ell analyzing powers at an incident energy of 202 MeV

    Full text link
    Within the framework of the relativistic distorted wave impulse approximation (DWIA), we investigate the sensitivity of the analyzing power - for exclusive proton knockout from the 3s1/2_{1/2}, 2d3/2_{3/2} and 2d5/2_{5/2} states in 208^{208}Pb, at an incident laboratory kinetic energy of 202 MeV, and for coincident coplanar scattering angles (28.028.0^{\circ}, 54.6-54.6^{\circ}) - to different distorting optical potentials, finite-range (FR) versus zero-range (ZR) approximations to the DWIA, as well as medium-modified coupling constants and meson masses. Results are also compared to the nonrelativistic DWIA predictions based on the Schr\"{o}dinger equation. Whereas the nonrelativistic model fails severely, both ZR and FR relativistic DWIA models provide an excellent description of the data. For the FR predictions, it is necessary to invoke a 20% reduction of sigma-nucleon and omega-nucleon coupling constants as well as for σ\sigma-, ρ\rho- and ω\omega-meson masses, by the nuclear medium. On the other hand, the ZR predictions suggest that the strong interaction in the nuclear medium is adequately represented by the free nucleon-nucleon interaction associated with the impulse approximation. We also demonstrate that, although the analyzing power is relatively insensitive to the use different relativistic global optical potential parameter sets, the prominent oscillatory behavior of this observable is largely attributed to distortion of the scattering wave functions relative to their plane wave values.Comment: 16 pages, 3 figures, submitted to Phys. Rev.

    High performance computing approach for DNA motif discovery

    No full text

    Accelerating the discovery of materials for clean energy in the era of smart automation

    No full text
    The discovery and development of novel materials in the field of energy are essential to accelerate the transition to a low-carbon economy. Bringing recent technological innovations in automation, robotics and computer science together with current approaches in chemistry, materials synthesis and characterization will act as a catalyst for revolutionizing traditional research and development in both industry and academia. This Perspective provides a vision for an integrated artificial intelligence approach towards autonomous materials discovery, which, in our opinion, will emerge within the next 5 to 10 years. The approach we discuss requires the integration of the following tools, which have already seen substantial development to date: high-throughput virtual screening, automated synthesis planning, automated laboratories and machine learning algorithms. In addition to reducing the time to deployment of new materials by an order of magnitude, this integrated approach is expected to lower the cost associated with the initial discovery. Thus, the price of the final products (for example, solar panels, batteries and electric vehicles) will also decrease. This in turn will enable industries and governments to meet more ambitious targets in terms of reducing greenhouse gas emissions at a faster pace
    corecore