162 research outputs found

    Anisotropy on the Fermi Surface of the Two-Dimensional Hubbard Model

    Get PDF
    We investigate anisotropic charge fluctuations in the two-dimensional Hubbard model at half filling. By the quantum Monte Carlo method, we calculate a momentum-resolved charge compressibility κ(k)=d<n(k)>/dμ\kappa (\bm{k}) = {d < n(\bm{k}) >}/{d \mu}, which shows effects of an infinitesimal doping. At the temperature Tt2/UT \sim {t^2}/{U}, κ(k)\kappa (\bm{k}) shows peak structure at the (±π/2,±π/2)(\pm \pi/2,\pm \pi/2) points along the kx+ky=π|k_x| + |k_y| = \pi line. A similar peak structure is reproduced in the mean-filed calculation for the d-wave pairing state or the staggered flux state.Comment: 5 pages, 3 figures, figures and presentation are modifie

    Superconducting states in frustrating t-J model: A model connecting high-TcT_c cuprates, organic conductors and Nax_xCoO2_2

    Full text link
    The two-dimensional t-J model on a frustrating lattice is studied using mean-field variational theories with Gutzwiller approximation. We find that a superconducting state with broken time-reversal symmetry (d+id state) is realized in the parameter region close to the triangular lattice. The frustration enlarges the region of superconductivity when t<0t<0 for the hole-doped case, which is equivalent to t>0t>0 for electron doping. We also discuss the SU(2) degeneracy at half-filling. The d+id state probably corresponds to the spin gap state at half-filling.Comment: 4 pages, 4 figure

    Disorder-driven quantum phase transition from antiferromagnetic metal to insulating state in multilayered high-Tc cuprate (Cu,C)Ba2Ca4Cu5Oy

    Full text link
    We report on superconducting(SC) characteristics for oxygen-reduced Cu-based five-layered high-temperature superconductor (Cu,C)Ba2Ca4Cu5Oy(Cu-1245(OPT)), which includes five-fold outer planes (OP) and four-fold inner planes (IP).As a result of the reduction of the carrier density, the bulk SC for Cu-1245 (OPT) takes place at the nearly optimally-doped OP with Tc= 98 K that is different from previously-reported Cu-1245(OVD) where IP plays a primary role for the onset of SC. It gives an evidence that the carrier density of the optimally-doped layer determines its bulk Tc.Static antiferromagnetic(AFM) order is evidenced at IP's by zero-field Cu-NMR at low temperature, irrespective of the SC transition at OP's below 98K. This AFM state at IP's is characterized by a carrier localization at low temperatures due to disorder effect, whereas the carrier densities in each layer are similar to Hg-1245(OPT) where the AFM metallic state are realized in IP's. This finding reinforces the phase diagram in which the AFM metallic phase exists between AFM insulator and SC states for the case of ideally-flat CuO2 plane without disorder.Comment: 4 pages, 5 figure

    Electronic states around a vortex core in high-Tc superconductors based on the t-J model

    Full text link
    Electronic states around vortex cores in high-Tc superconductors are studied using the two-dimensional t-J model in order to treat the d-wave superconductivity with short coherence length and the antiferromagnetic (AF) instability within the same framework. We focus on the disappearance of the large zero-energy peak in the local density of states observed in high-Tc superconductors. When the system is near the optimum doping, we find that the local AF correlation develops inside the vortex cores. However, the detailed doping dependence calculations confirm that the experimentally observed reduction of the zero-energy peak is more reasonably attributed to the smallness of the core size rather than to the AF correlation developed inside the core. The correlation between the spatial dependence of the core states and the core radius is discussed.Comment: 4 pages, 4 figure

    Quasiparticle States at a d-Wave Vortex Core in High-Tc Superconductors: Induction of Local Spin Density Wave Order

    Full text link
    The local density of states (LDOS) at one of the vortex lattice cores in a high Tc superconductor is studied by using a self-consistent mean field theory including interactions for both antiferromagnetism (AF) and d-wave superconductivity (DSC). The parameters are chosen in such a way that in an optimally doped sample the AF order is completely suppressed while DSC prevails. In the mixed state, we show that the local AF-like SDW order appears near the vortex core and acts as an effective local magnetic field on the quasiparticles. As a result, the LDOS at the core exhibits a double-peak structure near the Fermi level that is in good agreement with the STM observations on YBCO and BSCCO. The presence of local AF order near the votex core is also consistent with the recent neutron scattering experiment on LSCO.Comment: 4 pages, 2 ps figure

    Single Impurity Problem in Iron-Pnictide Superconductors

    Full text link
    Single impurity problem in iron-pnictide superconductors is investigated by solving Bogoliubov-de Gennes (BdG) equation in the five-orbital model, which enables us to distinguish s+_{+-} and s++_{++} superconducting states. We construct a five-orbital model suitable to BdG analysis. This model reproduces the results of random phase approximation in the uniform case. Using this model, we study the local density of states around a non-magnetic impurity and discuss the bound-state peak structure, which can be used for distinguishing s+_{+-} and s++_{++} states. A bound state with nearly zero-energy is found for the impurity potential I1.0I\sim 1.0 eV, while the bound state peaks stick to the gap edge in the unitary limit. Novel multiple peak structure originated from the multi-orbital nature of the iron pnictides is also found.Comment: 5 page

    Antiferromagnetic phase transition in four-layered high-T_c superconductors Ba_2Ca_3Cu_4O_8(F_yO_{1-y})_2 with T_c=55-102 K: Cu- and F-NMR studies

    Full text link
    We report on magnetic characteristics in four-layered high-T_c superconductors Ba_2Ca_3Cu_4O_8(F_yO_{1-y})_2 with apical fluorine through Cu- and F-NMR measurements. The substitution of oxygen for fluorine at the apical site increases the carrier density (N_h) and T_c from 55 K up to 102 K. The NMR measurements reveal that antiferromagnetic order, which can uniformly coexist with superconductivity, exists up to N_h = 0.15, which is somewhat smaller than N_h = 0.17 being the quantum critical point (QCP) for five-layered compounds. The fact that the QCP for the four-layered compounds moves to a region of lower carrier density than for five-layered ones ensures that the decrease in the number of CuO_2 layers makes an interlayer magnetic coupling weaker.Comment: 7 pages, 6 gigures, Submitted to J. Phys. Soc. Jp

    Vortex structure in chiral p-wave superconductors

    Full text link
    We investigate the vortex structure in chiral p-wave superconductors by the Bogoliubov-de Gennes theory on a tight-binding model. We calculate the spatial structure of the pair potential and electronic state around a vortex, including the anisotropy of the Fermi surface and superconducting gap structure. The differences of the vortex structure between sinpx+isinpy\sin p_x + {\rm i} \sin p_y-wave and sinpxisinpy \sin p_x - {\rm i} \sin p_y-wave superconductors are clarified in the vortex lattice state. We also discuss the winding 3\mp 3 case of the sin(px+py)±isin(px+py)\sin{(p_x+p_y)} \pm {\rm i} \sin{(-p_x+p_y)}-wave superconductivity.Comment: 10 pages, 8 figure

    Quasiparticles of d-wave superconductors in finite magnetic fields

    Full text link
    We study quasiparticles of d-wave superconductors in the vortex lattice by self-consistently solving the Bogoliubov-de Gennes equations. It is found for a pure dx2y2d_{x^2-y^2} state that: (i) low-energy quasiparticle bands in the magnetic Brillouin zone have rather large dispersion even in low magnetic fields, indicating absense of bound states for an isolated vortex; (ii) in finite fields with kFξ0k_F \xi_0 small, the calculated tunneling conductance at the vortex core shows a double-peak structure near zero bias, as qualitatively consistent with the STM experiment by Maggio-Aprile et al. [Phys. Rev. Lett. {\bf 75} (1995) 2754]. We also find that mixing of a dxyd_{xy}- or an s-wave component, if any, develops gradually without transitions as the field is increased, having little effect on the tunneling spectra.Comment: 4 pages, 4 figures, LaTe

    Reduction of the Superfluid Density in the Vortex-Liquid Phase of Bi2Sr2CaCu2Oy

    Full text link
    In-plane complex surface impedance of a Bi2Sr2CaCu2Oy single crystal was measured in the mixed state at 40.8 GHz.The surface reactance, which is proportional to the real part of the effective penetration depth, increased rapidly just above the first-order vortex-lattice melting transition field and the second magnetization peak field.This increase is ascribed to the decrease in the superfluid density rather than the loss of pinning.This result indicates that the vortex melting transition changes the electronic structure as well as the vortex structure.Comment: 4 pages, 4 figures, accepted for publication in Phys. Rev. Let
    corecore