40 research outputs found
Small RNA Profile in Moso Bamboo Root and Leaf Obtained by High Definition Adapters
Moso bamboo (Phyllostachy heterocycla cv. pubescens L.) is an economically important fast-growing tree. In order to gain better understanding of gene expression regulation in this important species we used next generation sequencing to profile small RNAs in leaf and roots of young seedlings. Since standard kits to produce cDNA of small RNAs are biased for certain small RNAs, we used High Definition adapters that reduce ligation bias. We identified and experimentally validated five new microRNAs and a few other small non-coding RNAs that were not microRNAs. The biological implication of microRNA expression levels and targets of microRNAs are discussed
In Silico Insights into the Symbiotic Nitrogen Fixation in Sinorhizobium meliloti via Metabolic Reconstruction
BACKGROUND: Sinorhizobium meliloti is a soil bacterium, known for its capability to establish symbiotic nitrogen fixation (SNF) with leguminous plants such as alfalfa. S. meliloti 1021 is the most extensively studied strain to understand the mechanism of SNF and further to study the legume-microbe interaction. In order to provide insight into the metabolic characteristics underlying the SNF mechanism of S. meliloti 1021, there is an increasing demand to reconstruct a metabolic network for the stage of SNF in S. meliloti 1021. RESULTS: Through an iterative reconstruction process, a metabolic network during the stage of SNF in S. meliloti 1021 was presented, named as iHZ565, which accounts for 565 genes, 503 internal reactions, and 522 metabolites. Subjected to a novelly defined objective function, the in silico predicted flux distribution was highly consistent with the in vivo evidences reported previously, which proves the robustness of the model. Based on the model, refinement of genome annotation of S. meliloti 1021 was performed and 15 genes were re-annotated properly. There were 19.8% (112) of the 565 metabolic genes included in iHZ565 predicted to be essential for efficient SNF in bacteroids under the in silico microaerobic and nutrient sharing condition. CONCLUSIONS: As the first metabolic network during the stage of SNF in S. meliloti 1021, the manually curated model iHZ565 provides an overview of the major metabolic properties of the SNF bioprocess in S. meliloti 1021. The predicted SNF-required essential genes will facilitate understanding of the key functions in SNF and help identify key genes and design experiments for further validation. The model iHZ565 can be used as a knowledge-based framework for better understanding the symbiotic relationship between rhizobia and legumes, ultimately, uncovering the mechanism of nitrogen fixation in bacteroids and providing new strategies to efficiently improve biological nitrogen fixation
Estimating GARCH models: when to use what?
The class of generalized autoregressive conditional heteroscedastic (GARCH) models has proved particularly valuable in modelling time series with time varying volatility. These include financial data, which can be particularly heavy tailed. It is well understood now that the tail heaviness of the innovation distribution plays an important role in determining the relative performance of the two competing estimation methods, namely the maximum quasi-likelihood estimator based on a Gaussian likelihood (GMLE) and the log-transform-based least absolutely deviations estimator (LADE) (see Peng and Yao 2003Biometrika,90, 967–75). A practically relevant question is when to use what. We provide in this paper a solution to this question. By interpreting the LADE as a version of the maximum quasilikelihood estimator under the likelihood derived from assuming hypothetically that the log-squared innovations obey a Laplace distribution, we outline a selection procedure based on some goodness-of-fit type statistics. The methods are illustrated with both simulated and real data sets. Although we deal with the estimation for GARCH models only, the basic idea may be applied to address the estimation procedure selection problem in a general regression setting
Experimental validation of a lap-type joint AC loss model with an ITER correction coil conductor joint
The ITER correction coils (CC) system features shaking hands lap-type joints to interface the terminations of the conductors. The feasibility of operating plasma scenarios depends on the ability of the magnets to retain sufficient temperature and current margins. In this respect, the joints represent a possible critical region due to the combination of steady-state Joule heating from the resistance of the joint and coupling currents and connected losses in magnetic field ramped operation. Since manufacturing and testing of different joint concepts is demanding from cost and time point of view, a dedicated model has been developed based on the numerical cable model JackPot-ACDC to reproduce the performance of lap-type joints and assess the effect of possible optimization solutions. In this work, the prediction capability of the model is verified through AC loss measurements on a prototype ITER CC joint manufactured at ASIPP. The results of the experiment and model are reported and discussed