385 research outputs found

    Task Scheduling Optimization in Cloud Computing by Jaya Algorithm

    Get PDF
    Cloud computing provides resources to its consumers as a service. The cloud computing paradigm offers dynamic services by providing virtualized resources via the internet for enabling applications, and these services are provided by large-scale data centers known as clouds. Cloud computing is entirely reliant on the internet to provide its services to consumers. Cloud computing offers several advantages, including the fact that users only pay for what they use weekly, monthly, or yearly, that anybody with an internet connection may use the cloud, and that there is no need to purchase resources, hardware, or software on their own. This paper proposes an efficient task scheduling algorithm based on the Jaya algorithm for the cloud computing environment. We evaluate the performance of our method by applying it to three instances. The recommended technique produced the optimal solution in makespan, speedup, efficiency, and throughput, according to the findings

    An Efficient Firefly Algorithm for Optimizing Task Scheduling in Cloud Computing Systems

    Get PDF
    As user service demands change constantly, task scheduling becomes an extremely significant study area within the cloud environment. The goal of scheduling is distributing the tasks on available processors in order to achieve the shortest possible makespan while adhering to priority constraints. In heterogeneous cloud computing resources, task scheduling has a large influence on system performances. The various processes in the heuristic-based algorithm of scheduling will result in varied makespans when heterogeneous resources are utilized. As a result, a smart method of scheduling must be capable of establishing precedence efficacy for each task to decrease makespan time. In our study, we develop a novel efficient method of scheduling tasks according to the firefly algorithm to tackle an essential task and schedule a heterogeneous cloud computing problem. We evaluate the performance of our algorithm by putting it through three situations with changing amounts of processors and numbers of tasks. The findings of the experiment reveal that our suggested technique found optimal solutions substantially more frequently in terms of makespan time when compared with other methods

    Probing Left-handed Slepton Flavor Mixing at Future Lepton Colliders

    Get PDF
    It has been argued in the literature that the search for the slepton oscillation phenomenon can be a powerful probe of intergenerational mixing between sleptons, once sleptons are found at future colliders. In this article we estimate possible reach of future lepton colliders in probing left-handed slepton flavor mixing, especially mixing between the first and third generations, on which constraints imposed by other processes like τeγ\tau \to e \gamma are very weak. e+ee^+e^- collider is suitable for this purpose, since it can produce, if kinematically allowed, sleptons of the first generation via t-channel, in addition to s-channel. Utilizing e^+e^- \to \tau e + 4jets + \E signal at e+ee^+e^- linear collider with integrated luminosity L=50 fb^{-1}(500 fb^{-1}) it may be possible to reach mixing angle sin2θν~0.06(0.04)\sin 2\theta_{\tilde{\nu}} \gtrsim 0.06 (0.04) and mass difference Δmν~0.07(0.04)\Delta m_{\tilde{\nu}} \gtrsim 0.07 (0.04) GeV for sneutrinos in the first and third generations at the statistical significance of 5 \sigma.Comment: 27 pages, 6 figures. A new section added. Conclusion unchanged. To appear in Phys. Rev.

    Double-Lepton Polarization Asymmetries and Branching Ratio in B \rar K_{0}^{*}(1430) l^+ l^- transition from Universal Extra Dimension Model

    Get PDF
    We investigate the B \rar K_{0}^{*}(1430) l^+ l^- transition in the Applequist-Cheng-Dobrescu model in the presence of a universal extra dimension. In particular, we calculate double lepton polarization asymmetries and branching ratio related to this channel and compare the obtained results with the predictions of the standard model. Our analysis of the considered observables in terms of radius RR of the compactified extra-dimension as the new parameter of the model show a considerable discrepancy between the predictions of two models in low 1R\frac{1}{R} values.Comment: 12 Pages, 15 Figures and 1 Tabl

    Development and validation of a high-performance thin-layer chromatographic method for the quantitative analysis of vitexin in Passiflora foetida herbal formulations

    Get PDF
    © 2019 Dehon et al. Introduction: Formative evaluations of clinical teaching for emergency medicine (EM) faculty are limited. The goal of this study was to develop a behaviorally-based tool for evaluating and providing feedback to EM faculty based on their clinical teaching skills during a shift. Methods: We used a three-phase structured development process. Phase 1 used the nominal group technique with a group of faculty first and then with residents to generate potential evaluation items. Phase 2 included separate focus groups and used a modified Delphi technique with faculty and residents, as well as a group of experts to evaluate the items generated in Phase 1. Following this, residents classified the items into novice, intermediate, and advanced educator skills. Once items were determined for inclusion and subsequently ranked they were built into the tool by the investigators (Phase 3). Results: The final instrument, the Faculty Shift Card, is a behaviorally-anchored evaluation and feedback tool used to facilitate feedback to EM faculty about their teaching skills during a shift. The tool has four domains: teaching clinical decision-making; teaching interpersonal skills; teaching procedural skills; and general teaching strategies. Each domain contains novice, intermediate, and advanced sections with 2-5 concrete examples for each level of performance. Conclusion: This structured process resulted in a well-grounded and systematically developed evaluation tool for EM faculty that can provide real-time actionable feedback to faculty and support improved clinical teaching

    Effect of Casting Conditions on the Fracture Strength of Al-5 Mg Alloy Castings

    Get PDF
    During the transient phase of filling a casting running system, surface turbulence can cause the entrainment of oxide films into the bulk liquid. Previous research has suggested that the entrained oxide film would have a deleterious effect on the reproducibility of the mechanical properties of Al cast alloys. In this work, the Weibull moduli for the ultimate tensile strength (UTS) and % elongation of sand cast bars produced under different casting conditions were compared as indicators of casting reliability which was expected to be a function of the oxide film content. The results showed that the use of a thin runner along with the use of filters can significantly eliminate the surface turbulence of the melt during mould filling which would lead to the avoidance of the generation and entrainment of surface oxide films and in turn produce castings with more reliable and reproducible mechanical properties compared to the castings produced using conventional running systems

    Inter - Relationship of Awareness, Knowledge, Attitude, Some Socio-Economic Variables and Osteoporosis in Sample of Egyptian Women

    Get PDF
    BACKGROUND: Osteoporosis is a global health problem, and its prevalence is rapidly increasing worldwide. AIM: The aim was to assess the awareness concerning some nutritional and socio-economic variables causes the disease in a sample of Egyptian women. METHODS: This study was done among 116 female volunteers. They were divided into two groups, pre and post-menopausal, with a mean age of 42.05 ± 8.25 & 51.13 ± 5.82 years and mean body mass index (BMI) of 30.83 ± 8.18 & 34.24 ± 8.80 kg/m2. A standardised questionnaire, socioeconomic and food frequency chart were used to assess osteoporosis and food intake awareness. Bone mineral density was measured by dual-energy X-ray absorptiometry (DEXA). Statistical analyses were done using simple percentage and Chi-square test. RESULTS: Data revealed that a low percentage of pre and post-menopausal women were aware of osteoporosis and fracture (16.67% & 12.96% and 30.65% & 19.35%). They had incomplete knowledge about the sources and the beneficial effects of consumption of calcium and vitamin D rich diet. Non-osteoporotic women showed more awareness. Odds ratio predict occupations and educations levels as risk factors for osteoporosis. CONCLUSION: Awareness about osteoporosis and consumption healthy diet were low among Egyptian women, so it is important to implement special osteoporosis prevention program

    Green synthesized extracts/Au complex of <i>Phyllospongia lamellosa</i>:unrevealing the anti-cancer and anti-bacterial potentialities, supported by metabolomics and molecular modeling

    Get PDF
    The anti-cancer and anti-bacterial potential of the Red Sea sponge Phyllospongia lamellosa in its bulk (crude extracts) and gold nanostructure (loaded on gold nanaoparticles) were investigated. Metabolomics analysis was conducted, and subsequently, molecular modeling studies were conducted to explore and anticipate the P. lamellosa secondary metabolites and their potential target for their various bioactivities. The chloroformic extract (CE) and ethyl acetate extract (EE) of the P. lamellosa predicted to include bioactive lipophilic and moderately polar metabolites, respectively, were used to synthesize gold nanoparticles (AuNPs). The prepared AuNPs were characterized through transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), and UV–vis spectrophotometric analyses. The cytotoxic activities were tested against MCF-7, MDB-231, and MCF-10A. Moreover, the anti-bacterial, antifungal, and anti-biofilm activity were assessed. Definite classes of metabolites were identified in CE (terpenoids) and EE (brominated phenyl ethers and sulfated fatty amides). Molecular modeling involving docking and molecular dynamics identified Protein-tyrosine phosphatase 1B (PTP1B) as a potential target for the anti-cancer activities of terpenoids. Moreover, CE exhibited the most powerful activity against breast cancer cell lines, matching our molecular modeling study. On the other hand, only EE was demonstrated to possess powerful anti-bacterial and anti-biofilm activity against Escherichia coli. In conclusion, depending on their bioactive metabolites, P. lamellosa-derived extracts, after being loaded on AuNPs, could be considered anti-cancer, anti-bacterial, and anti-biofilm bioactive products. Future work should be completed to produce drug leads

    Gauge-Higgs Dark Matter

    Full text link
    When the anti-periodic boundary condition is imposed for a bulk field in extradimensional theories, independently of the background metric, the lightest component in the anti-periodic field becomes stable and hence a good candidate for the dark matter in the effective 4D theory due to the remaining accidental discrete symmetry. Noting that in the gauge-Higgs unification scenario, introduction of anti-periodic fermions is well-motivated by a phenomenological reason, we investigate dark matter physics in the scenario. As an example, we consider a five-dimensional SO(5)\timesU(1)_X gauge-Higgs unification model compactified on the S1/Z2S^1/Z_2 with the warped metric. Due to the structure of the gauge-Higgs unification, interactions between the dark matter particle and the Standard Model particles are largely controlled by the gauge symmetry, and hence the model has a strong predictive power for the dark matter physics. Evaluating the dark matter relic abundance, we identify a parameter region consistent with the current observations. Furthermore, we calculate the elastic scattering cross section between the dark matter particle and nucleon and find that a part of the parameter region is already excluded by the current experimental results for the direct dark matter search and most of the region will be explored in future experiments.Comment: 16 pages, 2 figure

    A Complete Theory of Grand Unification in Five Dimensions

    Full text link
    A fully realistic unified theory is constructed, with SU(5) gauge symmetry and supersymmetry both broken by boundary conditions in a fifth dimension. Despite the local explicit breaking of SU(5) at a boundary of the dimension, the large size of the extra dimension allows precise predictions for gauge coupling unification, alpha_s(M_Z) = 0.118 \pm 0.003, and for Yukawa coupling unification, m_b(M_Z) = 3.3 \pm 0.2 GeV. A complete understanding of the MSSM Higgs sector is given; with explanations for why the Higgs triplets are heavy, why the Higgs doublets are protected from a large tree-level mass, and why the mu and B parameters are naturally generated to be of order the SUSY breaking scale. All sources of d=4,5 proton decay are forbidden, while a new origin for d=6 proton decay is found to be important. Several aspects of flavor follow from an essentially unique choice of matter location in the fifth dimension: only the third generation has an SU(5) mass relation, and the lighter two generations have small mixings with the heaviest generation. The entire superpartner spectrum is predicted in terms of only two free parameters. The squark and slepton masses are determined by their location in the fifth dimension, allowing a significant experimental test of the detailed structure of the extra dimension. Lepton flavor violation is found to be generically large in higher dimensional unified theories with high mediation scales of SUSY breaking. In our theory this forces a common location for all three neutrinos, predicting large neutrino mixing angles. Rates for mu -> e gamma, mu -> e e e, mu -> e conversion and tau -> mu gamma are larger in our theory than in conventional 4D supersymmetric GUTs. Proposed experiments probing mu -> e transitions will probe the entire interesting parameter space of our theory.Comment: 51 pages, late
    corecore